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1. Introduction

This document serves as a final report for the International Association of Oil and Gas Producers (IOGP)
Sound and Marine Life (SML) Joint Industry Programme (JIP)-sponsored study entitled, “Evaluation of
DECAF Methods Using an Existing Eight-Year Fixed Acoustic Monitoring and Localization Dataset,
Deployed During E&P Activities Along the Arctic Continental Shelf” (Contract Reference JIP22 I11-15-
14). The structure of this report consists of the following overview and four additional chapters, with the
four latter chapters formatted as peer-reviewed publications. This format was agreed upon with David
Hedgeland of BP, supervisor of the contract. Three of the chapters were submitted and accepted for peer-
review publication, and one may be submitted for peer review after submission of this report.

This introductory chapter will review the objectives of the original proposal, as well as summarize and
discuss how the following chapters relate to those objectives.

Overview

Over a period of eight years, on behalf of the Shell Exploration and Production Company (SEPCO),
Greeneridge Sciences, Inc. deployed a large array of acoustic recorders, then collected and analyzed the
dataset to study the response of migrating bowhead whales to various E&P (Exploration & Production)
activities (Blackwell et al. 2015). These deployments took place along a 280 km swath of the Alaskan
Arctic continental shelf, during the whales’ annual fall migration from Canadian waters to the Bering Sea.
Over 2.4 million bowhead calls were detected and localized on 35 Directional Autonomous Seafloor
Acoustic Recorders (DASARs), which have the unique capability of measuring the arrival azimuth of
sounds produced by localized sources. Groups of seven DASARs were arranged in triangular grids, or
“sites,” which allowed whale calls to be triangulated within and surrounding the grid perimeter. Automated
detection and localization software for processing this enormous dataset was developed, evaluated, and
published in the peer-reviewed literature (Thode et al. 2012). Previous analyses of this dataset have
demonstrated that sound production rates of bowhead whales change in response to sound from seismic
airgun surveys, but that the rates can either decrease or increase, depending on the received levels of the
airgun pulses (Blackwell et al. 2013, 2015). Other industrial activities monitored using this dataset are
drilling activities and the associated vessel movements of the drilling logistical support (Blackwell et al.
2017).

The enormous sample sizes of high-quality acoustic localizations in this dataset, combined with
independent visual survey estimates of migrating bowhead whale spatial densities across multiple years,
have allowed practical evaluations of several key questions about the efficacy and value of applying
acoustic density estimation (DE) methods to passive acoustic monitoring (PAM) data. These questions
included: (1) whether localization of individual calls is a necessary step in achieving accurate call density
estimates, (2) whether long-term trends in population growth or decline in E&P regions can be estimated
without knowledge of baseline cue rates (calling rates) of individuals, and (3) whether individual bowhead
cue rates could be estimated with reasonable uncertainties, by combining passive acoustic and visual survey
datasets.
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Relationship Between Project Objectives and Manuscripts

Mirroring these questions, the project had three main objectives. Each objective is listed below in italics,
followed by a summary of the manuscript(s) that address that objective.

(1)

)

Compare call production spatial densities estimated from DASAR array acoustic data using four
different density estimation (DE) techniques, checking for self-consistency between the methods’
predictions, and whether some degree of localization is an essential ingredient for density
estimation.

Chapter 2 by Oedekoven et. al addressed this objective and resulted in a manuscript entitled
“A comparison of three methods for estimating call densities of migrating bowhead whales using
passive acoustic monitoring”. The University of St. Andrews was the lead institution on this effort,
which compared three density estimation methods using manual analyses of multiple deployments
across multiple years: direct acoustic census (DAC), empirical point transect (EPT), and spatially
explicit capture recapture (SECR). A fourth method, modeled point transect, was not evaluated,
but the modeled detection functions required for this method were derived in a separate effort
(Chapter 3). The DAC and EPT methods require knowledge of the distance of a call from a sensor
(i.e., some localization is required), while SECR requires only that the same call be identified
correctly across multiple sensors. [Thomas and Marques (2012) and Marques et al. (2013) provide
reviews of these DE methods and their application to PAM data.]

This manuscript found that DAC and EPT gave consistent results for density estimation, but
SECR results (and the resulting detection function estimate) were substantially and unrealistically
different. The study concluded that the way the manual analysis was conducted violated one of the
key assumptions required for the SECR method, namely, detections of calls on individual sensors
must be statistically independent of each other. In reality, human analysts often used a strong
detection on one instrument as a signal to search more closely for weaker detections occurring at a
similar time on other instruments. In addition, the automated analysis dataset could not be used
with SECR because the technique requires incorporating data where some signals are detected on
only one sensor: a “singleton”. Unfortunately, the automated processing algorithm produces high
false detection rates when detecting calls on single sensors; only when potential call candidates are
matched across sensors does the false alarm rate fall to practical levels. The study thus concluded
that localization is a necessary feature when conducting density estimation for this dataset, and
methods that do not require localization (e.g., SECR) would require more stringent procedures for
both manual and automated analyses.

This chapter was submitted and accepted for peer-reviewed publication (Oedekoven et al.
2022).

Evaluate whether PAM can estimate relative trends in population growth or decline over several
years, without the need to estimate absolute animal densities or abundance. The derived trends
will be compared with decadal-long population trends observed from multi-year independent
visual censuses.

This objective was split into two sub-objectives. The first sub-objective examined whether
relative abundance estimates were consistent when measured between two independent sites
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separated by over 100 km. The second sub-objective investigated whether multi-year trends in
relative abundance matched visual estimates of animal abundance trends.

Two chapters addressed this objective: “Roaring vs. repeating: how bowhead whales adjust
their call density and source level (Lombard effect) in the presence of natural and seismic airgun
survey noise” by Thode et al. (2020; Chapter 3) and “Estimating relative abundance of bowhead
whale activity between two locations and across multiple years” by Thode et al. (Chapter 4). The
Scripps Institution of Oceanography (SIO) was the lead institution on these manuscripts.

The first manuscript examined how bowhead whale vocal activity (call density) and source
level vary with diffuse noise levels caused by wind and seismic survey airgun noise. The
manuscript found that bowhead whales became more vocally active as ambient noise levels
increase and as weak levels of airgun noise first appear. The whales became less vocally active as
airgun noise levels increase further. The whales also increased their call source level with
increasing levels of ambient noise (i.e., the Lombard effect, also known as “the cocktail party
effect”), but they did not change their source level as the cumulative dose of airgun sound increases.

The first manuscript also discussed how to use point transect theory to correct call density
measurements for calls masked by noise, and how to adjust point transect theory to handle
situations where multiple widely-separated (kilometer-scale baseline) sensors are used to locate a
sound. (Conventional point transect theory assumes that the range to a sound can be derived from
a single point.)

The second manuscript then took the aforementioned results and attempted to adjust raw call
counts to account for behavioral changes caused by diel effects and responses to natural and
anthropogenic ambient noise, in order to make a more accurate relative abundance estimate in terms
of cumulative call counts over each season. This manuscript found that multi-year relative
abundance trends were consistent between both sites, and the correlations improved when
behavioral corrections were added. However, the corrections only had a substantial effect on one
year (2009), an unusual season during which a large percentage of the season’s calls occurred over
a very short time period, so the large-scale efficacy of applying behavioral corrections remains
inconclusive. The study found that relative call abundance decreased from 2008 through 2011,
then climbed steadily between 2011 and 2014, such that the relative call abundance in 2014 was
nearly the same as 2008. The interpretation of these results is difficult, as these variations in relative
abundance can arise from shifts in the timing or position of the migration, changes in vocal behavior
across seasons, or changes in population abundance.

The first manuscript was submitted and accepted for peer-reviewed publication (Thode et al.
2020). We feel the second manuscript would require additional analyses to be a valid peer-
reviewed publication.

Derive absolute abundance (density) estimates by using three different approaches for estimating
the calling rates of individual bowhead whales, as a function of environmental and behavioral
conditions. Similarities between these three cue rate estimates will be interpreted as evidence that
estimating absolute abundance is feasible. The three methods included attempting to track
individual whales acoustically (“bottom-up”), dividing the cumulative call counts across sites by
the estimated population size (“top-down”), and applying acoustic tags.
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This objective was the most speculative, and only one of the methods, “top-down”, turned out
to be promising. This method was analyzed in the manuscript “Estimating acoustic cue rates in
bowhead whales, Balaena mysticetus, during their fall migration through the Alaskan Beaufort
Sea” by Blackwell et al. (2021; Chapter 5), which combined visual censuses of the total bowhead
whale migration population, aerial surveys of the migration corridor width, and three passive
acoustic datasets in order to place bounds on the “average” calling rate of an individual whale. The
paper concluded that despite the wide range of uncertainties of the variables involved, estimated
cue rates for migrating whales derived across multiple arrays and multiple years were within an
order of magnitude of each other. This chapter did not use the behavioral corrections employed in
the previous chapters, as the impact of these factors was generally small for all years except 2009.
The fall migration median call rate was only 1.3 calls/whale/hour (and interquartile range of 0.5—
5.4 calls/whale/hour), a rate much lower than what has been reported from acoustic studies of the
spring migration.

This chapter was submitted and accepted for peer-reviewed publication (Blackwell et al. 2021).

The low individual call rate of bowhead whales is the primary reason why the second, “bottom-
up”, analysis eventually failed. Given the relatively short amount of time a whale spends swimming
through a DASAR array (1-2 hours), a typical whale would call perhaps once or twice, and it was
very difficult to link a sequence of localizations into a track. Some such sequences were found, but
they were unusual and rare. Aaron Thode and his graduate student Ludovic Tenorio analyzed one
sequence in detail (Fig. 1), in which 50 calls were measured over 1.7 hours (~29 calls/hour);
however, we felt that several individuals swimming in tandem might have generated the track. The
precision of the triangulation technique was only about 300 m for these calls, so it was possible
that multiple whales could have been calling. Tenorio did some research into whether the tracks
could be refined using a “double-difference” technique adopted from seismology (Wilcock 2012;
Tenorio-Hallé et al. 2017) and gave two scientific presentations on the topic at Acoustical Society
of America (ASA) meetings in 2017 and 2018, where he tested the technique on calibrated
playbacks generated by known sources at known locations, and then applied it to the track in
question. He found that applying additional relative timing information from the sensors did not
improve the tracking results because measuring the relative arrival times between low-frequency
calls in a shallow-water environment was not very precise, due to strong attenuation of many call
components. Adding relative bearing information did improve the resolution, but not enough where
we could rule out the possibility of multiple calling animals. Given that (1) acoustic tracks were
the result of rare outliers, and (2) we could not distinguish individuals within a potential group, we
decided that the “bottom-up” approach was not worth further effort. A copy of Tenorio’s 2018
ASA presentation is included in the Appendix of this report.
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FIGURE 1. Acoustic tracks of an unusually vocal whale or group of whales between 23:12 AKDT
(30 Aug 2010) and 00:55 AKDT (31 Aug 2010). Upper left: raw track obtained by DASAR
triangulation; upper right: track refined using relative arrival times between sensors and the “double-
difference” technique; bottom left: track refined using relative bearing information and “double-
difference” technique; bottom right: track refined using both relative timing and bearing information.

The third and final approach to cue rate estimation, acoustic tagging, relied on collaborating
with other institutions with the relevant bowhead tagging experience and permits. These two
groups had been attempting to apply Acousondes™ to bowhead whales: one in the Beaufort Sea
(Lori Quakenbush and colleagues) and another in Disko Bay in West Greenland (Mads Peter Heide-
Jorgensen and colleagues). For various reasons out of our control, including an unsuccessful
tagging season and a cancelled tagging season, we were not able to obtain such data over the
timeline of the project. Bowhead whales had been tagged successfully in separate studies which
took place in 2013 and 2016 in Disko Bay, West Greenland. Counting only records that exceeded
a few hours in length, a total of six records were obtained, lasting 825 h. Calls or other sounds
made by the tagged whales were not the focus of the analyses in these studies and were not fully
quantified, but it is clear that they were exceedingly rare, on the order of 1 or 2 per record.

In summary, this project identified at least two consistent density estimation methods (DAC and EPT),
documented how migrating bowhead whales adjust their vocal activity in response to various environmental
factors, established that relative call abundance can be consistently predicted between two independent
deployment sites, and placed surprisingly small bounds on the cue rates of migrating bowhead whales by
combining multiple independent visual and acoustic datasets. This study’s findings regarding DE methods
are applicable to other E&P locations, irrespective of species of interest and acoustic propagation
characteristics (although such issues affect selection of acoustic recorder specifications and recorder
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deployment arrangement, respectively), and suggest that localization is necessary for robust density
estimation.

The results of this project have been widely shared among the marine mammal, acoustics, and statistical
ecology scientific communities. Numerous presentations have been given at professional conferences:
Society for Marine Mammalogy biennial conference (2017); Acoustical Society of America meetings
(2017, 2018); National Centre for Statistical Ecology meetings (2017, 2019); Detection, Classification,
Localization and Density Estimation of Marine Mammals using Passive Acoustics workshop (2018);
Effects of Sound in the Ocean on Marine Mammals / IOGP E&P Sound & Marine Life Joint Industry
Programme meeting (2018); International Statistical Ecology Conference (2018, 2020); Effects of Noise
on Aquatic Life conference (2019); World Marine Mammal Conference (2019); among others.
Furthermore, four potential peer-reviewed manuscripts have been produced, of which three have been
submitted and published (Table 1).

TABLE 1. Publications and manuscripts resulting from the JIP study “Evaluation of DECAF Methods Using
an Existing Eight-Year Fixed Acoustic Monitoring and Localization Dataset, Deployed During E&P
Activities Along the Arctic Continental Shelf”.

Title Authors Journal Status

Environmental and
Ecological Statistics
(EEST)

A comparison of three methods
for estimating call densities of
migrating bowhead whales

Cornelia S. Oedekoven,
Tiago A. Marques, Danielle
Harris, Len Thomas, Aaron

Submitted: September 2019
1%t Revision: May 2020
2" Revision: August 2020

using passive acoustic
monitoring

Roaring vs. repeating: how
bowhead whales adjust their
call density and source level
(Lombard effect) in the
presence of natural and
seismic airgun survey noise

Estimating relative abundance
of bowhead whale activity
between two locations and
across multiple years

Estimating acoustic cue rates
in bowhead whales, Balaena
mysticetus, during their fall
migration through the Alaskan
Beaufort Sea

M. Thode, Susanna B.
Blackwell, Alexander S.
Conrad, Katherine H. Kim

Aaron M. Thode, Susanna B.
Blackwell, Alexander S.
Conrad, Katherine H. Kim,
Tiago Marques, Len Thomas,
Cornelia S. Oedekoven,
Danielle Harris, Koen Broker

Aaron M. Thode, Susanna B.
Blackwell, Alexander S.
Conrad, Katherine H. Kim

Susanna B. Blackwell, Aaron
M. Thode, Alexander S.
Conrad, Megan C. Ferguson,
Catherine L. Berchok,
Kathleen M. Stafford, Tiago
A. Marques, Katherine H. Kim

Journal of the
Acoustical Society of
America (JASA)

Journal of the
Acoustical Society of
America (JASA)

Journal of the
Acoustical Society of
America (JASA)

Resubmitted: February 2021
Revised: May 2021
Published Online: June 2021
Issue Date: March 2022

Submitted: September 2019
Revised: February 2020
Published: March 2020

Manuscript in Preparation

Submitted: November 2020
Revised: April 2021
Published: May 2021
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Abstract

Various methods for estimating animal density from visual data, including distance
sampling (DS) and spatially explicit capture-recapture (SECR), have recently been
adapted for estimating call density using passive acoustic monitoring (PAM) data,
e.g., recordings of animal calls. Here we summarize three methods available for pas-
sive acoustic density estimation: plot sampling, DS, and SECR. The rs t two require
distances from the sensors to calling animals (which are obtained by triangulat-
ing calls matched among sensors), but SECR only requires matching (not localiz-
ing) calls among sensors. We compare via simulation what biases can arise when
assumptions underlying these methods are violated. We use insights gleaned from
the simulation to compare the performance of the methods when applied to a case
study: bowhead whale call data collected from arrays of directional acoustic sensors
at v e sites in the Beaufort Sea during the fall migration 20072014. Call detec-
tions were manually extracted from the recordings by human observers simultane-
ously scanning spectrograms of recordings from a given site. The large discrepan-
cies between estimates derived using SECR and the other two methods were likely
caused primarily by the manual detection procedure leading to non-independent
detections among sensors, while errors in estimated distances between detected calls
and sensors also contributed to the observed patterns. Our study is among the rs t
to provide a direct comparison of the three methods applied to PAM data and high-
lights the importance that all assumptions of an analysis method need to be met for
correct inference.

Keywords Distance sampling N on-independent detections P lot sampling
Spatially explicit capture-recapture

Handling Editor: Luiz Duczmal.

Published online: 15 June 2021 a Springer
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Environmental and Ecological Statistics

1 Introduction

Passive acoustic monitoring (PAM) is a non-invasive method for monitoring ani-
mals in their natural environment that involves recording the sounds that the animals
produce (e.g., calls, songs and echolocation clickshe reafter generically referred
to as calls ). It has proven to be an important tool for monitoring wildlife popula-
tions, including both aquatic animals (e.g., shrimp, s h and cetaceans, Lammers and
Munger 2016; sharks, Heupel et al. 2004) and terrestrial animals (e.g., birds and
amphibians, Acevedo and Villanueva-Rivera 2016; elephants, Wrege et al. 2017;
primates, Kalan et al. 2015; frogs, Stevenson et al. 2015). PAM is gaining impor-
tance for mitigation management and the protection of endangered species (e.g., Van
Parijs et al. 2009; Hildebrand et al. 2015; Brunoldi et al. 2016; Jaramillo-Legorreta
et al. 2017).

Using PAM data for monitoring wildlife populations generally involves using
acoustic data to estimate either absolute animal density (number of animals per unit
area), or some index of relative animal density such as call density (number of calls
per unit area per unit time) or call counts (number of calls per unit time detected
on a sensor). In general, estimating animal density from PAM requires additional a
priori information about the average sound production rate by the individual animals
during different behavioral states, which may not be available. For this reason, this
paper does not attempt to compare absolute density estimates. We focus instead on
methods for estimating relative density from PAM data, specic ally for estimating
call density. Call densities have advantages over simple call counts in that they can
account for variation in detectability over time or space, avoiding the need to assume
that detectability is constant when interpreting any observed pattern. However, addi-
tional data and analyses are required to account for detectability.

The main statistical methods for estimating animal density include spatially
explicit capture-recapture (SECR, e.g., Borchers and Efford 2008; Dawson and
Efford 2009; Marques et al. 2012; Martin et al. 2013; Stevenson et al. 2015), dis-
tance sampling (DS, e.g., Buckland et al. 2015) and plot sampling (PS, e.g., Vilchis
et al. 2006). Each of these have been adapted for use in estimating call density from
PAM data (see reviews by Thomas and Marques 2012; Marques et al. 2013). In this
paper, we present a comparison of PS, DS and SECR and examine their relative per-
formance when applied to the same real-world PAM dataset.

Each method requires different assumptions and also demands different capabili-
ties from the PAM system in terms of the ability to localize detected calls. Both
PS and DS require explicit distances between sensors and calls, while SECR only
requires matching detected calls among acoustic sensors. In some specic cases, it
is possible to estimate distances to calls from a single instrument (e.g., using echoes,
Tiemann et al. 2006, or modal sound separation, Marques et al. 2011); however, for
most PAM data, this typically requires analyzing the relative time-of-arrival of the
call among multiple sensors. For moving PAM systems, e.g., a hydrophone array
towed by a ship, distances can be obtained by triangulating multiple call positions
from a static source using a moving baseline (Barlow and Taylor 2005; Lewis et al.
2017). Here we focus on x ed PAM systems (sensors mounted or moored on the
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sea oor), and use a dataset of call detections obtained from recordings made with
directional sensors that enabled us to triangulate individual call positions simply and
quickly without precise time-of-arrival estimates. All these techniques require some
form of cross-sensor matching, where the same call is recognized on different sen-
sors with a relative timing precision, the scale of which depends on the distance
between the sensors (Thode et al. 2012).

A comparison between the three density estimation methods has rarely been
undertaken with PAM data, as in most cases the data have limited the analyses to
a particular method. For example, Phillips (2016) compared DS and SECR esti-
mates of animal density from a combination of PAM and focal follow data against a
small population of known size and concluded that they generally produced similar
results. In this study, we use a single large PAM dataset (without auxiliary data from
a different source) consisting of > 680,000 bowhead whale calls in the Beaufort Sea,
collected by Greeneridge Sciences, Inc. (Santa Barbara, California), on behalf of
Shell Exploration and Production Company (SEPCO) over an 8-year monitoring
period (20072014). The required data for each methoddis tances to the calls for
DS and PS and matched calls across sensors for SECRw ere all available from this
single dataset. Since the same dataset was used for all three estimation methods, any
discrepancies in results must arise from violations of one or more of the assump-
tions for the respective methods. We also created a simulation tool to examine the
robustness of the density estimation methods to various violations of underlying
assumptions.

We rs t describe how to estimate call densities from PAM data using PS, DS, and
SECR, and the assumptions underlying these methods. We test via simulation what
biases may arise when these assumptions are violated. We then analyze the bowhead
whale data with each method, compare the resulting call densities and detection
functions (where applicable) and discuss the observed discrepancies between the
methods using insights gleaned from the simulation. Lastly, we discuss the implica-
tions of our ndings in the wider context of density estimation with PAM.

2 Methods for estimating call densities

We focus on calls in this study, although the methods apply to other sounds pro-
duced by the animals as well. Marques et al. (2013) described four steps for estimat-
ing call densities from PAM data:

1. Identify calls produced by animals of the target population that relate to animal
density, i.e., calls that are produced by a known proportion of the population (e.g.,
adult males) with some regularity following a mean call production rate (given, e.g.,
as the number of calls produced by an individual per day).

2. Collect a sample of detections of calls using a well-designed survey protocol
(e.g., the calls detected in the acoustic recordings in Fig. 1).

3. Estimate the false positive rate  i.e., the rate of incorrectly classifying a
detected sound as the call of the target species.

4. Estimate the average probability of detecting a call ~ within the search area.
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Fig. 1 Example PAM survey design based on the bowhead whale study using a congur ation of seven
acoustic sensors moored to the seaoor (red dots A G) where each sensor represents a vertex in regular
triangles with 7 km edges. Pink lines are azimuths to the call locations with uncertainty (light pink). W
whale, S ship, C sounds produced by whales or ships identie d as calls

More than one method is available for each step. While each of these four steps is
necessary to estimate call density and relies on the previous steps, this paper focuses
on a comparison of different methods for step 4, i.e., estimating the probability of
detecting a call. In order to estimate animal density from PAM data, we would need
to convert call densities into animal densities in a f th step which requires obtaining
a conversion factor (e.g., the mean call production rate per individual, Marques et al.
2013).

To familiarize the reader with the four steps of PAM call density estimation and
the bowhead whale dataset used in this study, we present a simple hypothetical
example in Fig. 1. We are interested in estimating call density of bowhead whales
during their fall migration from Canada into the Bering and Chukchi Seas, hence
we use all calls produced by bowhead whales (Mathias et al. 2008) (step 1). For
step 2, we moor seven sensors at our study site in shallow waters (approximately
50 m), each capable of measuring the azimuth to the sounds they record. For reasons
explained below related to localizing calls, the spacing of the sensors should be cho-
sen that calls produced near one sensor (e.g., sensor A in Fig. 1) have a high prob-
ability of being detected at neighboring sensors (B and C). While the sensors are
recording, bowhead whales migrate through the area and make calls (e.g., whale W1
produces call C1) or not (e.g., silent whale W3). Some calls are not detected (e.g.,
C1), while others are detected by one sensor (e.g., C4) or multiple sensors (e.g., C2).
Other sounds might also be detected by the sensors and falsely classi ed as whale
calls (e.g., C3).

As part of step 2, the recordings are analyzed for acoustic detections using
either (i) a manual search protocol where human observers scan the recordings
for calls, e.g., visually screening spectrograms of the acoustic data, or (ii) an
automated, computer-based, detection and classi cation algorithm. The latter
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Table 1 Capture history of .
Object Call A B C D E F G Total
detections at sensors AG based vee 2 o
on the example from Fig. 1 Wi cl 0 0 0 0 0 0 0 0
w2 c2 0 0 0 0 1 1 1 3
S1 Cc3 0 0 0 0 0 1 0 1
W3 0 0 0 0 0 0 0 0
w4 Cc4 0 1 0 0 0 0 0 1
W5 C5 1 0 1 0 0 0 0 2
S2 Cc6 0 0 0 0 1 0 1 2
As we do not detect the objects themselves in a real scenario but
only the sounds they produce, we only observe the Call column
and the columns to the right of it and row entries that are italic. 1:
detected, 0: not detected. Total: number of sensors on which each
call (row) is detected
Table 2 Distances (in km) Object Cal A B C D E F G Toul
between localized calls and
sensors AG , fo}lowing the Wi cl 0
example from Fig. 1 and the - L 5
capture history in Table 1 w2 cz a non Ao 213 151 177 3
S1 Cc3 n n a i i i 0
W3 0
W4 c4 i a n /] i i 0
W5 c5 112 @ 105 A A il i 2
S2 c6 i i i a 126 7 11.1 2

Total: number of distances that can be used for a DS analysis

generally requires that a false positive rate be estimated (see step 3 above), typi-
cally by comparing the automatic detections with detections acquired by a human
observer (as in (i)). In the case of large datasets, not all automated detections
need to be veri ed to estimate a false positive rate (Marques et al. 2009). A sys-
tematic-random sample can be taken instead, where even spacing occurs between
samples and a random starting detection is selected, to ensure both a representa-
tive and random sample, e.g., every 100th detection starting at the 32nd detec-
tion. After automated or manual detection, calls are matched across sensors, lead-
ing to a capture history similar to that illustrated in Table 1.

Calls detected on multiple sensors are localized using the callis azimuths from
the sensors (Fig. 1). Pomerleau et al. (2011) showed that the mean dive depth
of bowhead whales does not exceed 100 m. As the difference between this and
the sensor depth is much smaller than the distance that bowhead whales can be
detected from (e.g., Thode et al. 2020), we ignore depth and use horizontal space
in the following (Barlow and Taylor 2005). For these localized calls, the dis-
tance to the detecting sensors can be determined (Table 2). This process naturally
results in that only those calls that are easier to detect at greater distances can be
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localized. Consider, e.g., a call produced 4 km south of sensor A. Even though
this call may be close enough to sensor A to be detected with high probability, in
order for it to be localized, it has to be detected by at least one more sensor, e.g.,
B or C at 9.6 km or 11 km distance to the call, respectively.

In this hypothetical example, the data used for SECR analyses would be the cap-
ture histories from Table 1, while the data used for DS analyses would be the dis-
tances from Table 2. Although for PS we do not use distances for model tting, we
use these distances to limit the analyses to counts of calls within a de ned search
radius. Calls only detected by one sensor cannot be localized; they therefore lack
distance estimates and are not included in the PS or DS analyses. We refer to these
single-detector calls as singletons in the following. SECR is the only method that
includes singletons in the analysis.

2.1 Analyses methods and assumptions

Here we summarize the formulas and assumptions for the three density estimation
methods in the context of PAM. More complete descriptions of these methods in
the context of PAM can be found in Marques et al. (2013) and, in general, for PS
in Borchers et al. (2002), for DS in Buckland et al. (2015) and for SECR in Borch-
ers and Efford (2008) and Borchers (2012). Using the notation from the four steps
above, i.e., the , and p, the estimator for call density D, in its most basic form is
(Marques et al. 2013):

= (1)

where A is the total search area covered by  sensors and T is the duration of the
recording. While and are the same for PS, DS and SECR, each method dene s
D., , ,Aand p differently. Hence, we use subscript notation for these quantities in
the following.

The average detection probability p within the search area is generally modelled
using two main components: the absolute detection probability at zero distance from
the sensor , which is the probability that a call made at zero horizontal distance
from the sensor is detected by the sensor, and a detection function that describes
the decay in detection probabilities with increasing distance y from the sensor rel-
ative to . Depending on the method, either component is assumed or estimated
from the data where applicable (see below). A frequently used detection function is

the half-normal:
<__> o (2)
[

Equation (2) contains one parameter, the scale parameter o, which needs to be
estimated. Note that = 1. Larger o values yield detection functions with
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high detection probabilities out to larger distances. In the following we use these
components, and , to compare for the three different methods.

2.1.1 Plot Sampling (PS) for PAM data

PS is the simplest of the three estimation methods, but places the most demands
on the PAM localization capability. PS limits the search area to the K circles
with radius around the sensors, each circle with area , and includes only
the calls localized within . Here, is the sum of the number of detections
within radius around each sensor, counting any duplicates of a given call
caused by overlapping circles twice. The total search area equals

PS assumes that all calls produced within the individual are detected
with certainty. To meet this assumption, the search area is typically limited to a
relatively small radius . We can therefore assume that and .
Hence, this method does not require estimating a detection function, at the cost
of rejecting large numbers of detections that originate outside . As we need
to determine which calls originated from within , a successful PS applica-
tion requires that all calls produced within around any sensor are localized
hence, the required sensor spacing described above. Further assumptions are
listed in Table 3.

The false positive rate for calls within is dene d as the proportion of all
sounds localized within around the sensors that were falsely identi ed as calls
of interest. It can be estimated as described above in Sect. 2, limiting the representa-
tive sample to calls localized within

2.1.2 Distance sampling (DS) for PAM data

Here, each sensor represents a point in a point transect survey, which is a form of
DS (e.g., Buckland et al. 2001, chapter 5; Buckland 2006). In comparison to PS,
we expand the search radius from to a larger radius, and include all

call detections within (the circular area around a sensor with radius ) from
each of the K sensors. Like PS, DS assumes that all calls at (or near) the sensor are
detected with certainty, i.e.: However, we no longer assume that all calls
within the area around each sensor are detected with certainty. Instead, we ta
detection function to the distances between the sensors and the detected calls
(e.g., as in Table 2) and use it to estimate the average detection probability within

- / 3

An estimate of can be obtained using Eq. (3), replacing with
(Buckland et al. 2015). One sees that PS is a limiting case of DS when the search
radius is shrunken to values small enough that becomes 1. Similar to PS,

refers to the sum of the number of detections that fall within the search areas
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of the sensors, and any call that falls within overlapping search areas is counted
towards for each time it was detected by a sensor along with the distance to the
respective sensor. While this may seem to artic ially ina te , the reasoning again
arises from the requirement that the total search area is , 1.e., no subtraction
of any overlapping areas occurs.

Multiplication of the search area around a sensor with yields a quan-
tity called the effective area v , which is the area around a sensor within
which as many calls were missed as were detected outside. It can also be expressed
in terms of the detection function (Buckland et al. 2015):

\% T / (4)

An estimate of the effective area, V  can be obtained using Eq. (4), replacing
with 7~ . We can substitute vV for 7 in Eq. (1) for estimating call
densities.

Another critical assumption for DS is that distances between the sensor and the
calls are measured accurately, just like for PS. Uncertainty in localizations and,
hence, in the distances, leads to bias in = and the estimated call densities (e.g.,
Borchers et al. 2010). The inue nce of minor random distance errors can be allevi-
ated by tting the detection function to binned distances, where the bin width is
set to equal the distance error (Buckland et al. 2015). As only localized calls are
included in tting the detection function (as opposed to any detected call), the detec-
tion function describes the probability of localizing a call with increasing distance
from the sensor (as opposed to the probability of detecting a call). It follows that the
detection function in the PAM context considered here is a localization func-
tion rather than a detection function. Generally, we expect to decrease with
increasing distance from the sensor and, although singletons are not localized, an
increasing proportion of singletons with increasing distance from the sensor. Further
assumptions are listed in Table 3.

The false positive rate  for calls within is estimated as the proportion of all
sounds localized within around the sensors that were falsely identi ed as calls
of interest. It can be estimated as described above in Sect. 2, limiting the representa-
tive sample to calls localized within

2.1.3 Spatially explicit capture-recapture (SECR) for PAM data

For SECR we estimate the probability of detecting a call at distance zero as well
as the detection function from the capture histories of the calls (e.g., Borch-
ers and Efford 2008; Borchers 2012). Hence, in comparison to PS or DS, we are not
required to assume that all calls at/near the sensor are detected and we do not require
call distances or locations. Furthermore, the data are not truncated by a search radius,

ie., . All detected calls, along with their detection histories, are included in
the analysis, regardless of the number of sensors they were detected on. Theoretically,
with , the total search area and approaches zero. Hence,
in practice, we use a different approach where the search area around each sensor
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only extends out to a de ned distance beyond which it is safe to assume that no
calls can be detected (Efford 2019). Nonetheless, we do not estimate an average detec-
tion probability within . Instead, we use estimates of and to obtain
an estimate of the effective areav . As for DS, it is estimated using a combination of
the search area and the detection probabilities. However, in contrast to DS, the effective
areav is de ned as the whole area surrounding the K sensors within which as many
calls were missed as were detected beyond. It is estimated using the following steps

(e.g., Stevenson et al. 2015). First we estimate the probability that a call produced
at location  (this location is unobserved) is detected by the kth sensor using:

() ®)

where s the distance between and the kth sensor. The probability that the

call was detected on at least one sensor becomes:

o | ©)

The effective area is obtained by integrating over . In practice this is
done by dividing into grid cells, each with size , where the represent the
center points of the grid cells:

v Y () @

The estimate Vv obtained using Eq. (7) replaces ~ from Eq. (1) for estimating
call density with SECR. Also in contrast to PS or DS, refers to the total number
of unique calls included in the analyses for SECR and each call contributes to
only once, regardless of how many sensors detected it (as opposed to or which
refer to the number of detections for PS and DS, respectively).

This method assumes that calls are matched reliably across sensors, detections are
made independently between sensors, no un-modelled heterogeneity in detection prob-
abilities exists (i.e., the call detection function depends only on the distance to the sen-
sor, or other appropriate covariates are included in the detection function model, e.g.,
Singh et al. 2014). Further assumptions are listed in Table 3. The assumption of inde-
pendent detections between sensors, which emerges as a key factor in this study, means
that the detection of a call on one sensor does not in uence the probability of detecting
a call on another sensor.

The false positive rate is estimated as the proportion of all calls detected on
any sensor that were falsely identi ed as calls. In general, we expect the false positive
rate to be higher for SECR compared to PS and DS, because the SECR analysis incor-
porates all call detections including singletons, and not just localized calls. In compari-
son, for PS and DS both the truncation and the inclusion of localized calls only, poten-
tially eliminate a lot of false detections from the analysis.

@ Springer

20



GREeeNeRIDGe
SCIeNCes

Evaluation of DECAF Methods Using DASARs

Environmental and Ecological Statistics

3 Simulation study
3.1 Methods

We developed a simulation tool to investigate the effect of violating the assump-
tions from Table 3 on call density estimates from PAM data using PS, DS and
SECR. The full description of the tool is given in Appendix 1; here we summa-
rize the key ndings. The simulation results allowed us to understand and diag-
nose the causes for potential discrepancies in the results between methods in the
bowhead whale data.

Each simulation consisted of 1,000 iterations. For each iteration we generated
random call detections in a rs t step, using the same sensor con guration as shown
in Fig. 1 and a known number = 10,000 calls produced at known locations over
a x ed recording time T throughout a dene d study area; hence, call density
was known. These calls were detected by each sensor with probability ,
with known and using a half-normal key function (Eq. (2)) for with
known scale parameter ¢ . Any call detected on multiple sensors was considered as
matched correctly between sensors. In a second stage, we analyzed the call detection
data using each of the three methods. We rs t tested the methods performed if all of
the assumptions from Table 3 were met in a baseline simulation. We then expanded
these tests to scenarios where one of the assumptions from Table 3 was violated. To
identify potential biases, we used the following diagnostics:

a. Comparisons of estimated call density with true call density ;

b. Comparisons of the estimated with true probabilities of detection (DS and SECR
only) using visual tools the detection function plot as shown in Fig. 2 and
comparisons of (SECR only) and ¢ estimated with the respective method vs
the true values ando

c. Plotting proportions of calls detected by one, two, three, etc. sensors (de ned here
as proportion plots) as shown in Fig. 2. Following the hypothetical example, these

Detection functions Proportion plot Estimate | Bias | Bias| Bias
of PS DS | SECR
Baseline g
. . * True D.:
simulation z 2 sim
g En gosim
R o 1 | Ogim
Distance (km) Number of sensors

Fig.2 Results from the baseline simulation. Red, scaled histogram of distances (km) to calls detected
by two or more sensors within km, overlain with the true (black line) and estimated DS (blue
line) and SECR (purple line) detection functions. Green proportion plot depicting the proportion of
calls detected by 1 7 sensors. Color code for median-biases in the estimates as a percentage: [_| none
to minor negative or positive bias of < 10%; positive biases: [T] > 10%; [Jl]|> 20%; [Jl] = 50%; negative
biases: |:| > 10%; -2 20%; -2 50%; - NA. Numerical results are given in Appendix 1
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Fig.3 Results from simulation where one assumption from Table 3 was violated. Red: scaled histogram »
of distances (km) to calls detected by two or more sensors, overlain with the true (black line) and esti-
mated DS (blue line) and SECR (purple line) detection functions. Green proportion plot depicting the
proportion of calls detected by 17 sensors. Color code for median biases in the estimates as a percent-
age: [_] none to minor negative or positive bias of < 10%; positive biases: [T]> 10%; [li] > 20%; [l >
50%; negative biases: [] > 10%; [[l] = 20%; [l> 50%; ] NA. Numerical results of biases are given in
Appendix 1

were produced using the total number of detections for each call (i.e., as presented
in the Total column from Table 1).

Note that for both a. and b. we estimated bias with respect to the median of the
1000 estimates, and not the mean, because the non-linear transformations created by
the use of the detection function generated long tails in the distribution that dispro-
portionately impacted the mean (McHugh 2003).

3.2 Baseline simulation

For the baseline simulation, we ensured that all of the assumptions from Table 3
were met. As the acoustic sensors (Fig. 1) were not randomly placed throughout the
entire study area (thus violating assumption 1: adequate survey design representa-
tive of the entire study area), we randomly distributed calls using a uniform distribu-
tion in the simulation in order to preserve the assumption.

Average biases were minor for the call density estimates for each of the three
methods, as well as for the parameters pertaining to detection probabilities obtained
with SECR (¢ and ) (Fig. 2). The estimates of the DS scale parameter were
negatively biased and the DS detection function declined more quickly with increas-
ing distance than the true or SECR detection functions; however, as the estimated
DS detection function actually represented a localization function where each call
needed to be detected by two or more sensors, this bias was expected. The fact that

tte d better to the histogram of distances than was caused by the
increasing number of singletons with increasing distance which were not included in
the histogram. Hence, although the DS detection function was negatively biased, the
missing singletons meant that, overall, the DS detection function tte d the distances
to the measured distances well and estimated call densities only had minor biases
(Fig. 2).

The proportion plots consistently revealed the pattern shown in Fig. 2 i.e., the
largest proportion of calls (~ 0.42) detected on only one sensor and decreasing pro-
portions towards the maximum possible number of sensors.

3.3 Simulating Violations of Underlying Assumptions

We ran eight simulations of 1,000 iterations each, where in a given simulation one of
the eight assumptions listed in Table 3 was violated. Appendix 1 details how these
violations were modelled. Almost every violation introduced various biases. Inad-
equate survey design caused strong bias in call density estimates for each method
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(row 1, Fig. 3). Un-modelled heterogeneity in detection probabilities (row 2) and
inaccurate estimates of the false positive rate (row 4) only caused severe biases in
call densities estimated with SECR; mis-associations (row 5) and lumping of calls
(row 6) also caused larger biases for SECR compared to PS and DS. Setting <1
(row 3) and introducing distance errors (row 8), on the other hand, only caused
biases for PS and DS estimates. However, violation of the independence assump-
tion (row 7) lead to the largest discrepancies from the baseline, both in terms of the
SECR detection functionw hich was nearly horizontal within the 30 km displayed
in Fig. 3a  nd the proportion plot. This was the only scenario in which the pattern
differed from the decreasing proportions with the increasing number of sensors from
the baseline simulation in Fig. 2.

4 Case study
4.1 Data description

Greeneridge Sciences, commissioned by SEPCO, collected acoustic data in the
Beaufort Sea during 20072014 to monitor potential effects of oil exploration on
bowhead whales. Data were collected using DASARs (Directional Autonomous
Seaoor Acoustic Recorders), whose directional capability allowed localization
of calls through triangulation (Greene et al. 2004). Each year during the bowhead
whale migration westward through the Beaufort Sea (e.g., Harwood et al. 2017), up
to a total of 40 DASARs were deployed at v e sites (Fig. 4) in July or August and
retrieved in September or October, obtaining continuous acoustic recordings. The
geometry of the normal congur ation at each site was seven DASARs arranged in a
triangular grid with 7 km spacing between sensors (Figs. 1, 5), although some sites
had as few as three and as many as 13 sensors during some years (Appendix 2).

The recordings were analyzed for whale calls using both manual detection by
observers and an automated detector (Blackwell et al. 2013, 2015), although the
manual analysis was only performed on a subset of the monitoring period. In this
paper we restricted the analyses to the manually detected calls, under the assumption

7Y

° Latitude
° Latitude

=:Site 4 :z Site 5
o 3

Kaktovik =

T T T
-170 -160 -150 -140 _150 .
° Longitude ° Longitude

Fig.4 Study area and DASARs in their normal congur ation at sites 15 shown in red, land shown in
green, depth contour lines in grey (100 m, 500 m, 1000 m and 2000 m)
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Fig.5 Bowhead whale call density (number of calls/km?/day) in 20072014 for each site estimated with
PS (light blue), DS (dark blue), and SECR (purple); horizontal lines represent the estimates, vertical
lines the 95% ClIs. Bottom right plot displays the three focal site-year combinations

that the false positive rate should be nearly zero; hence, we were able to set the false
positive rate for each of the methods, and , to zero. The dataset of auto-
mated call detections had much higher fractions of singletons and we suspected that
these singletons contained a large proportion of false positives, making them unsuit-
able for SECR analysis.

Manual detection involved observers visually inspecting 1-min spectrograms
from all DASARs at a site simultaneously on a single screen. When a call was
detected, the observer examined each spectrogram individually to mark the time and
frequency range of the call on each DASAR on which it was visible. These detec-
tions generated the call detection histories (similar in format to Table 1) used in the
SECR analyses. For a call detected on at least two DASARs, we used the estimated
angles between the call and the DASARs to triangulate the location of the source
(Thode et al. 2012). As there was some uncertainty in the angles, there was uncer-
tainty about the localization. For those calls that could be localized, we calculated
the distances between the call and each of the DASARSs that detected the call (simi-
lar in format to Table 2).

In 2007 the entire season was inspected manually, whereas in 20082012 and
2014, 59 full days (midnight to midnight) spread throughout the season in the
respective year were inspected. The chosen days were judged to be representative of
the varying levels of natural and anthropogenic noise each year, as well as the vary-
ing numbers of whale calls detected. In 2013 all data from six selected days were
inspected for sites 1 and 2, but due to the huge numbers of whale calls detected,
a modie d inspection regimen was adopted for sites 3, 4, and 5. Each hour of a
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day was divided into four quarters, each 15 min in duration, and only the rst and
third quarters were inspected. For sites 3 and 5, this resulted in 50% of each of the
six days being inspected. For site 4, the new protocol was applied after the manual
inspection for that site had begun, so some hours were inspected at 50%, some at
75%, and some at 100%. In 2010 only two DASARs were deployed at site 2 which
could also not be calibrated due to too much ice at the site. Hence, we excluded data
from site 2 in 2010 from the analyses.

4.2 Analysis

We estimated call densities using the manually detected bowhead whale call data
with the three density estimation methods using functions from the R libraries
Distance (Miller 2017; Miller et al. 2019) and secr (Efford 2019). For PS and DS,
data were truncated at = 4 km and = 30 km, respectively. Previous work
(Blackwell et al. 2015; Thode et al. 2020) concluded that 80% of all whale calls are
detected within 3.5 km radius of a sensor, regardless of their source level (how loud
they were). We assumed that no calls could be detected from beyond 200 km and,
hence, set 200 km. For DS and SECR we tte d one-parameter half-normal
detection functions (Eq. (2)) without modelling potential heterogeneity in detection
probabilities, i.e., detection probabilities were assumed to depend only on the dis-
tance to the sensor, but not on other factors. For DS, distances were binned into ten
bins of 3 km each to mediate potential biases due to distance errors. Separate analy-
ses were conducted for each site and each year with the exception of site 2 in 2010,
which had insufficient data, yielding 39 different site-year combinations.

For PS, no detection function was tte d; therefore, estimates of uncertainty (95%
conde nce intervals (Cls)) represent only variance due to encounter rate. This was
estimated using the P3 estimator from Fewster et al. (2009), which is the standard
encounter rate variance estimator and the default method of the Distance::ds func-
tion for DS point transect analyses (Miller 2017). For DS, the uncertainty from the
detection function, estimated using the Distance::ds function, also contributed to
the estimate of the uncertainty of call density and both components were combined
using the delta method (Buckland et al. 2001, p. 76). Log-normal con dence inter-
vals for call density were produced for PS and DS using methods described in Buck-
land et al. (2001, pp. 7778) which take into account the small number of samplers
(DASARsS). For SECR, density in general or call density in the PAM context is one
of the model parameters and, hence, asymptotic estimates of uncertainty are based
on the inverse of the information matrix from maximizing the unconditional likeli-
hood and are reported as outputs by the secr function of the secr R library (Borchers
and Efford 2008).

We used the same assessments for comparing results of the three methods as
for the baseline simulation, except that here true values were unknown and esti-
mates could only be compared between the three methods. In the following, we
focus on three representative site-year combinations (denoted by, e.g., S107 for site
1 in 2007), but full comparisons for all 39 site-year combinations are included in
Appendix 2.
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Table 4 Number of DASAR deployments (DASARs) at the sites, recording times (in days), number of
calls and number of detections included in the respective analyses across all years or site-year-specic for
the three examples

PS DS SECR

Site Year DASARs Days Calls Detections Calls Detections Calls Detections

15 200714 278 444 171,252 185,010 470,594 2,151,254 686,192 3,091,842
1 2007 5 49 5216 5696 8034 23376 13,017 29,603

3 2007 7 46 9467 10,076 22,625 97,613 32,473 130,071
3 2009 7 8 1654 1807 6082 30,527 9634 50,244

4.3 Results

The analyzed dataset included a total of 444 recording days and 686,192 calls across
all sites and years combined (Table 4). The number of calls and number of detec-
tions included in the analyses varied between methods due to different truncation
distances. Sample sizes were large even when broken down into site-year specic
counts and truncated at 4 km for PS. For any given site-year combination, the com-
putational time for tting models was longest for SECR and shortest for PS due to
inherent methods and different sample sizes included in the analyses (Table 4 and
Appendix 2). Tot models, for example, to data from S107 on an Intel(R) Core(TM)
i7 processor with 2.60 GHz CPU and 16.0 GB RAM took 6 s, 22 s and 6 min 47 s
for PS, DS and SECR, respectively.

Estimated call densities per site and year were generally similar for PS and DS
although slightly higher for PS compared to DSbut typically much lower for
SECR (Fig. 5). The latter were on average more than 60 times lower than PS esti-
mates across all site-year combinations and, on average, more than 50 times lower
than DS estimates. These discrepancies between SECR estimates and PS or DS
estimates were unexpected, as the analyses were based on the same detection data.
Even though singletons were included only for SECR, we expected that estimated
detection probabilities should be slightly smaller for DS and, hence, correct for the
reduced number of detections, yielding similar call density estimates.

Uncertainty in the estimated call densities was generally the largest for PS and
lowest for SECR (Fig. 5). Often CIs were too narrow, particularly for SECR, to be
visible in Fig. 5 on the scale required for the comparison between the three methods.
95% Cls were wider for PS than for DS due to the larger encounter rate variances
for PS. They always overlapped for DS and PS while only in very few cases did they
overlap between PS and SECR or DS and SECR (e.g., S107, S108, S213).

The three speci c site-year combinations that we focus on in the following to
investigate these discrepancies in call density estimates were sites 1 and 3 in 2007
and site 3 in 2009. This selection included one case (S107) where observed patterns
were similar to the baseline simulation in Fig. 2 and two cases (S307 and S309) that
showed substantially divergent patterns. For S307 and S309, call density estimates
were much smaller for SECR compared to PS and DS (Figs. 4, 5), while for S107
the SECR estimate was lower but within the 95% CIs of PS and DS. The comparison
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Fig.6 Results from analyzing the bowhead whale data including estimates and 95% ClIs of call density

, and parameters  and c estimated with the three methods for three example sites. JJjjj indicates NA.
Red, scaled histogram of distances (km) to calls detected by two or more sensors, overlain with the esti-
mated DS (blue line) and SECR (purple line) detection functions. Green proportion plots depicting the
proportion of calls detected by 17 s ensors

of the DS and SECR detection functions for S107 looked as expected, i.e., similar
to Fig. 2 where the SECR detection function was slightly wider and & slightly
larger than 6 (Fig. 6). For S307 and S309, the pattern was different in that the
SECR detection functions were unreasonably a tunr easonable because we do
not expect to detect bowhead whale calls at 30 km with probability ~ 0.9 (Thode
et al. 2020)a nd estimates of ¢ were extremely large. The proportion plot for
S107 (Fig. 6) showed decreasing proportions with increasing sensors, while for the
other two site-years this pattern was reversed (S309) and the majority of calls were
detected on all DASARs, or proportions were similar across number of DASARs
(8307).

4.4 Comparison with simulation study

Results from our case study revealed the following discrepancies between call den-
sity estimation methods for most site-year combinations:

1. SECR call density estimates were much lower than PS or DS density estimates;

2. SECR detection functions yielded estimated detection probabilities that were
unreasonably large out to large distances;

3. Nearly equal or increasing proportions of calls detected with increasing num-
bers of DASARs.

4. Slightly higher call density estimates for PS compared to DS.
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Of these, we consider the rs t three to be major discrepancies. The simulations
conducted determined that the only scenario that recreated the same three major dis-
crepancies was one that modelled non-independent detections across sensors. Only
then did the simulation results for SECR show strong negative biases in call den-
sity, strong positive biases in the scale parameter estimates and a very wide detec-
tion function. This was also the only violation that caused the highest proportion
of detected calls to be in the all-sensor category (Fig. 3, row 7), while for all other
violations, the highest proportion of detected calls was in the single sensor category
(similar to the pattern revealed by the baseline simulation in Fig. 2). The simulation
results also revealed that PS estimates were unaffected by non-independence viola-
tions and DS estimates were slightly positively biased by it.

The only simulated scenario for which PS estimates were higher than DS esti-
mates, the fourth, minor discrepancy listed above, was when error in the distance
measurement was introduced. These results conr med our suspicion that measure-
ment error existed in the case study due to call localization uncertainties.

5 Discussion
5.1 How non-independence of detections affects SECR

We believe the non-independent detections originated from the manual detec-
tion process during which observers visually scanned 1-min spectrograms of all
DASARSs at a given site simultaneously and logged each detected call on each chan-
nel. It is likely that a detection made on one DASAR cued the observer into search-
ing for the same call on the other DASARs and, hence, artic ially increased the
detection probabilities for this call on the other DASARs. Proportion plots proved to
be a key tool for revealing the non-independence issue. As a result, many more calls
than expected were detected on more than one DASAR (Fig. 6 and Appendix 2). In
18 cases of the 39 site-year combinations analyzed, the highest proportion of calls

(@) Manual Detections (b) Automatic Detections

0.4
0.

0.3
0.3

Proportion
0.2

Proportion
0.2

0.1
0.1

0.0
0.0

1 2 3 4 5 6 7 2 3 4 5 6 7
Number of DASARs Number of DASARs

Fig.7 Proportion plots of the bowhead whale detections for all sites-years with normal DASAR congu -

ration combined: a for the manually detected calls and b for the automatically detected calls (singletons
not shown, see text)
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were detected on all DASARs (Appendix 2). Only in two manually-analyzed cases
was the highest proportion on one DASAR, which is the pattern expected from a
fully independent detection process.

Additional evidence that the manual detection process caused the non-independ-
ence between detections was provided by the following observation: the proportion
plots for the automatically and manually detected data were very different from each
other (Fig. 7). In fact, the automatic detections showed the distribution we would
expect, i.e., decreasing proportions with the increasing number of DASARs (Thode
et al. 2012). Singletons are not shown in Fig. 7 for the automatic detections because
they dominated the proportion of detected calls. Because standard formulations of
SECR rely on the presence of accurate counts of singletons, applying SECR analysis
to the automated results would have required either improving the automated algo-
rithm or developing an SECR estimator that requires calls to be detected by at least
two sensors instead of at least one.

We suspect that modic ations to the manual analysis protocol could reduce the
dependence between detections on different DASARs. One simple but very labor-
intensive option would have observers scanning the spectrograms for each DASAR
separately in a st round, marking the detected calls and, in a second round, match-
ing the marked calls across sensors. Here it would be essential that during the sec-
ond round, observers would not add any new detections as a result of referring to
detections made during the rs t round, which would increase the probability of
detection for these new detections in the second round. This second round matching
could also be done automatically using a customized algorithm (Thode et al. 2012).

Possible ways for dealing with non-independence in the data for SECR, which
could be considered in future studies, include developing a new estimator which
accommodates non-independent detections (e.g., Stevenson et al. unpublished data).
Non-independence can be alleviated if the process that caused independence can be
incorporated in the model. For our case study, this may be as simple as including a
covariate in the SECR detection model indicating which sensor the call was detected
on rs t by the observer. Here, we would expect that the detection function would
drop off relatively quickly for call-sensor combinations detected rst by the observ-
ers and be much a tter for the remaining call-sensor combinations. This information
was not available for our case study.

5.2 Relationships between PS and DS

Another interesting feature in our case study was that call density estimates were
consistently slightly higher for PS compared to DS. For our simulation, this pattern
was generally the opposite, i.e., slightly higher density estimates for DS compared
to PS (Fig. 3). The only simulated scenario where PS density estimates were higher
compared to DS estimates was when errors in the observed distances were intro-
duced. Bochers et al. (2010) showed that random error in distance measurements
causes positive biases in DS estimates, more so for point transects compared to line
transects. In a sense, the issue is comparable to biases caused by random movement
of animals before detection where animals are not detected at their original snapshot
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location but at some distance from it. Glennie et al. (2015) showed that for most
animal speeds, the movement of animals causes larger biases for strip transects (a
type of PS) than for line transects (a type of DS). Hence, we assume that for our
case study, the higher estimates for PS compared to DS may have been caused by
the uncertainty in localization and the resulting random error in distance measure-
ments. This casts doubt on whether the use of binned distances for the DS analyses
was sufficient to mediate any potential issues. Further simulations would be needed
to determine the exact amount of bias in call densities for each of the three methods.

5.3 Estimated vs assumed detection probability at or near the DASAR

Lastly, we note that ™~ was not considered sufficient proof that the assump-
tions of or were met as the latter two require certain detection
by at least one more DASAR for localization. However, we assumed that a viola-
tion of this assumption would yield smaller call density estimates for PS and DS in
comparison to SECR. Further research will be conducted to investigate this using
a mark-recapture DS (MRDS, Borchers 2012) approach where is estimated
for each DASAR individually using the detections of the other DASARSs at the same
site as trials (Oedekoven et al., unpublished data). For S307, for example, of
DASAR A is estimated using the detections made by the other DASARs at S307,
i.e., DASARs BG , as trials for A.

6 Conclusion

While passive acoustic density estimation is becoming a widely used alternative to
visual methods, our ndings highlight the importance of satisfying key assumptions
behind the various methods to avoid substantial bias. In particular, our study has
highlighted some fundamental problems in implementing SECR in PAM datasets.
First, the strong requirement for independent detections across sensors implies that a
rigorous manual inspection protocol needs to be implemented, ensuring that manual
reviewers cannot consult multiple data streams simultaneously to enhance the detec-
tion of weak calls. Implementing such a protocol would likely slow down the rate of
analysis and increase the risk of missing weaker calls.

While most large-scale automatic detection algorithms do satisfy the independ-
ence assumption, and would thus seem to be suited to SECR analysis, automated
detectors also tend to have a relatively large false detection rate for detections based
on one sensor. When detections are compared between multiple sensors, the auto-
mated false detection rate tends to drop considerably, which ensures that the dis-
tribution of localized calls is accurate but produces inaccurate samples of calls
detected on just a single sensor. Since DS relies on localized calls only, this method
is unconcerned with high false detection rates on a single sensor; but for current
SECR implementations, this high false detection rate on singletons would be fatal.
Practical implementation of SECR on large-scale PAM datasets will therefore
either require improvements in manual detection (without incorporating contextual
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information from earlier times or other sensors to ensure statistical independence),
or require further theoretical development of SECR algorithms that can exclude sin-
gletons, thus making automatic detections with high false positive rates among sin-
gletons suitable for SECR analysis.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10651-021-00506-3.
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6.1 Appendix 1: Simulation study

6.1.1 Baseline simulation

To determine potential biases between different methods for estimating densities, we developed a
simulation tool that allows comparing estimated call densities between three methods: plot sampling
(PS), distance sampling (DS), and spatially-explicit capture-recapture (SECR). Each simulation

employed 1,000 iterations, with each iteration consisting of the following steps:

Step 1: Study area, call distribution and sensor placement

The objective of the baseline simulation was to test how the methods perform when all the
assumptions from Table 3 were met. Here, we placed calls in a study area with dimension 200km x
200km according to a uniform call distribution (Fig. 8). We used the normal configuration of seven
sensors from the bowhead whale study with 7km spacing in two offset north-south lines (Figs. 1, 8).
All calls were produced within a single day during which the sensors were recording, i.e. T = 1day (see

equation (1)).
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Fig. 8 Example of the simulated study area with sensors (red triangles) and uniformly distributed calls
(circles) color-coded by the number of sensors they were detected by (see legend) for the baseline
simulation. Right plot is a zoom of the left plot

Step 2: Detection of calls, call history and distances between sensors and calls

The sensors detected each of the calls according to probability go ;.. gsim (), where go ;... was set to
1, gsim(¥) a half-normal (equation (2)) with scale parameter gg;, = 13.5km for the baseline
simulation and y is the distance between the call and the sensor. Detection was determined by
drawing a random binomial sample from Bin(1, go;,,9sim(¥)), where an outcome of 1 meant
detected and 0 not detected. This calculation was completed for each call-sensor combination creating
the detection histories (similar in format to Table 1) used for the SECR analyses.

Building on the detection histories, we determined which calls were detected on two or more sensors
and calculated distances between the call and those sensors that detected the call (similar to Table 2).
These localized calls including their detection distances to the sensors were used for the DS and PS
analyses.

Step 3: Estimating call density and call abundance
For the baseline PS analysis, we only used localized calls within a radius of 4 km. Call density was
estimated using equation (1).

For the distance sampling analysis, we truncated the data at 30km. We used the ddf function from the
Distance R package (Miller 2017) to fit a half-normal detection function to the detection distances and
to estimate the average detection probability within the search area (equation (5)). The ddf function
also returns an estimate of call densities based on the methods described in Section 2.2.2.

For the SECR analysis, we fitted the models with a half-normal detection function using the secr.fit
function from the secr R package (Effort 2019). These functions use methods as described in Section
2.2.3.

For each method, call abundance estimates for the study area were obtained by multiplying the
estimated call density with the size of the study area and with T. We present the results in terms of
call abundance instead of call density as, in this case, it is easier to recognize the size of the bias of the
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estimates on the scale of abundance, e.g. comparing a call abundance estimate of 9,669 calls against
a true value of 10,000 calls, as opposed to a call density estimate of 0.057 calls per km? per day against
the true value of 0.059 calls per km? per day.

Summarizing the results for 1,000 iterations
We determined biases in the median of the estimated abundances and parameters by comparing

these with the true abundances and true parameter values (e.g. using (median(Ngim) — Nsim)/Ngim)-

Table 5 shows the numerical values that correspond to the biases presented in Fig. 2. For the baseline
scenario, estimated abundances were, on average, slightly biased, <5% negatively for SECR and PS and
~6% positively for DS (Table 2). The variability in the estimates was largest for SECR and smallest for
DS. The scale parameter estimates also showed minor biases, ~¥1% positive for SECR and ~11% negative
for DS. This negative bias for DS was expected as gps(y) describes the probability of localizing calls,
whereas gspcr () describes the detection probability for calls being detected at a single sensor.

Table 5 Estimated median and interquartile range of estimates of abundance from 1,000 iterations of
the baseline simulation

N sim
#| PS Median PS IQR DS Median DS IQR SECR Median SECRIQR True
0 9,669 8,219-11,119 10,625 9,490 - 11,654 9,882 8,400-11,308| 10,000

Table 6 Median and interquartile range of estimates of the detection probability parameters from the
baseline simulation

Osim gosim
# | DS Median DS IQR SECR Median SECRIQR True | SECR Median SECRIQR |True
0 12.01 11.62-12.44 13.67 12.67-14.86 | 13.5 1.00 0.96-1.00| 1.00

6.1.2 Deviations from the baseline

In comparison to the baseline simulation described above, we investigated how the methods
performed when the assumptions from Table 3 were violated. The methods for implementing these
violations are listed in Table 7. We note that the amount of bias caused should only be compared
between methods for a given violation and not for a given method between violations.

In Table 7, rows 1-3 pertain to potential environmental conditions encountered in a real scenario, e.g.
how animals distribute themselves in their environment, the properties of the calls they produce or
how sound travels across the underwater landscape; rows 2 and 3 could also be caused by sensor
properties. Rows 4-8 relate to potential errors introduced during the call analysis. Each assumption
violation was investigated in an individual simulation (i.e. without combining potential issues) with
1,000 iterations each.
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Table 7 Description of how the assumption violation was implemented in the simulation

# | Violated assumption Implementation of violation in the simulation
1 | Adequate survey design | We introduced a gradient of call densities across study area
representative of entire study area (both a North-South gradient and concentration of calls in a
horizontal band near sensors).
2 | No un-modelled heterogeneity in | We used dy;, that varied between sensors for generating the
detection probabilities call detections ranging between 1.35 and 54.00.
31g0=1 We set g, to 0.7 for generating the call detections.
4 | The false positive rate is estimated | 40% of the total number of detected calls were added as
accurately singleton detections allocated randomly to the seven sensors.
5 | No mis-associations of calls across | Call detections were incorrectly matched between sensors: for
sensors a proportion, 0.2, of calls detected on 2+ sensors, one detection
was set to not-detected and a new call created as a singleton for
that sensor.
6 | No lumping of calls A proportion, 0.2, of calls detected on 1+ sensors were falsely
identified as the same call.
7 | Independent detection of calls across | The probability that a call was detected by a sensor depended
sensors on whether it was detected by a different sensor: a proportion,
0.9, of detected calls, were logged as detected on all sensors for
which the true detection probability was 20.1, where the true
detection probability was calculated using the detection
function defined in 6.1.1, step 2.
8 | Accurate distances between sensors | Systematic and random errors in distances between the calls
and calls and sensors were introduced using Ve ~N (1.1 X Yiruer Verue)
where Y. are the true distances between the sensors and the
calls and y,,.- are the distances with errors.
Results

The worst biases (>50%) in median call abundance estimates for SECR occurred for the simulations
with a gradient in call distribution across the study area (Table 7, row 1), heterogeneity in detection
probabilities (row 2), lumping of calls across sensors (row 6) and non-independence (row 7). We note,
however, that analyses methods exist for SECR for modelling non-uniform distributions of animals
within the study region (e.g. Efford 2017) or heterogeneity in detection probabilities (e.g. Effort 2019).
For DS and PS striking biases occurred for the simulation with a gradient in call distribution (row 1),
which was impossible to pick up with the survey design as all sensors were placed in the center of the
study area. This was less of a problem for SECR. For PS, introducing errors in distances also caused
striking biases in call abundance estimates (row 8), much more so than for PS. This was likely due to
the fact that random errors in distances have a much larger effect on small circular plots (4km radius
for PS vs 30km for DS). This resulted in drastically overestimating densities within the search area and
inferring abundances.

The most striking bias for the scale parameter of the detection function existed for SECR in the case
of non-independence (Table 7, row 7) where the median of the estimates was almost 10X 0y;;,. This
resulted in a much wider detection function for SECR than the true detection function (Fig. 3, row 7).
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For SECR, nggcr is the total number of detected calls (Section 2.2.3), which did not change in the case
of non-independence. On the other hand, as a result of the positively biased scale parameter, the
effective area estimates were positively biased, thus leading to a median abundance estimate with >97%
negative bias. For DS, non-independence still introduced ~57% positive bias in the median of the scale
parameter estimates. However, as here npg is the number of call detections, which increased in the
case of non-independence, the positive bias was mostly alleviated. PS was unaffected by non-
independence.

Positive bias in gsgcg also existed in three further cases, i.e. when the assumptions of adequate survey
design, no un-modelled heterogeneity in detection probabilities or no lumping of calls were violated
(Fig. 3, rows 1, 2, 6). This lead to biases in the abundance estimates that were positive in the former
two cases and negative only in the latter case. The most indicative diagnostic tool for non-
independence was the proportion plot. The proportion plots consistently resembled the equivalent
plot from the baseline simulation for all simulations, except for the one with non-independence
(compare Fig. 3, row 7 with Fig. 2). Hence, we conclude that non-independence was likely the main
issue causing the discrepancies in the results of the case study between PS, DS and SECR.

Table 8 Median and interquartile range (IQR) of call abundance estimates using PS, DS and SECR from
the simulations. Medians with >50% bias highlighted in red. A: reference number to assumptions listed
in Tables 3, 7

Nsim
A| PS Median PSIQR DS Median DS IQR SECR Median SECRIQR True
1| 45927 42,543 - 49,311 48,545 45,820 - 51,227 15,039 890 - 17,071 | 10,000
2 9,669 8,219 -11,603 9,731 8,884 — 10,601 44,864 40,705 - 49,018 | 10,000
3 6,768 5,318- 8,219 7,313 6,471 - 8,081 9,774 7,486 - 11,991 | 10,000
4 9,669 8,219 -11,119 10,509 9,572 - 11,622 20,148 17,918 — 22,325 | 10,000
5 9,185 7,735 -10,636 10,182 9,068 -11,181 11,379 9,654 — 13,080 | 10,000
6 7,735 6,285— 9,185 8,077 7,175 - 8,950 4,880 301- 6,060 | 10,000
7 9,669 8,219 -11,603 11,699 10,645 - 12,615 252 236 - 272 | 10,000
8 46,411 42,543 — 50,762 12,204 11,087 - 13,420 9,882 8,400- 11,308 | 10,000

Table 9 Median and interquartile range (IQR) of estimates of d;, using DS and SECR and g0g;,, using
SECR from the simulations. Medians with >50% bias highlighted in red. A: reference number to
assumptions listed in Tables 3, 7

Osim Osim
A | DS Median DS IQR SECR Median SECRIQR True SECR Median SECRIQR True
1 10.70 10.53-10.90 18.76 17.51 — 87.00 13.5 1.00 0.95-1.00 1.00
2 31.83 27.81-37.87 18.58 17.72 — 19.59 1.35-54.00 0.90 0.88 - 0.91 1.00
3 11.57 11.19-12.04 13.66 12.16 — 15.64 13.5 0.70 0.66-0.74 0.70
4 12.01 11.62-12.44 12.05 11.69 - 12.49 13.5 0.96 0.92-1.00 1.00
5 11.80 11.43-12.21 13.69 12.62 — 14.74 13.5 0.92 0.88 - 0.96 1.00
6 13.54 12.97-14.21 17.58 15.79 - 77.54 13.5 1.00 0.97-1.00 1.00
7 21.23 19.94-22.88 132.99 124.65 —139.22 13.5 1.00 1.00-1.00 1.00
8 10.06 9.78-10.37 13.67 12.67 — 14.86 13.5 1.00 0.96 - 1.00 1.00
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6.2 Appendix 2: Case study

6.2.1 Data
The normal configuration as depicted in Fig. 1 was present in 25 of the 39 site-year combinations
analyzed; variations of this configuration with 3 — 13 DASARs per site were used in others (Fig. 9).
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Fig. 9 Specific configurations of DASARs (red dots) and locations of calls (black dots) in degrees of
latitude and longitude detected by two or more DASARs at each site and in each year

6.2.2 Analyses

We analyzed the bowhead whale call data with the three methods described in the main manuscript,
PS, DS and SECR. Analyses were conducted separately for each of the 39 site-year combination. For PS
and DS, data were truncated at 4km and 30km, respectively. For DS and SECR we fitted one-parameter
half-normal detection functions without modelling potential heterogeneity in detection probabilities
(Buckland et al. 2015). For DS, distances were binned into ten bins of 3km each to mediate potential
biases due to distance errors — which generally pose the largest problem for point transects at
distances near zero.

6.2.3 Results
The analyses included 278 deployments of DASARs, 444 recording days from the individual sites and
686,192 calls (Table 10).
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Table 10 Number of DASAR deployments (DASARs), recording times (in days) for each site-year
combination and as a total across all sites and years. Number of calls and number of detections
included in the analyses varied between methods due to different truncation distances (4km, 30km
and 200km for PS, DS and SECR, respectively)

Site Year
2007
2008
2009
2010
2011
2012
2013
2014
2007
2008
2009
2011
2012
2013
2014
2007
2008
2009
2010
2011
2012
2013
2014
2007
2008
2009
2010
2011
2012
2013
2014
2007
2008
2009
2010
2011
2012
2013
2014
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444

Calls
5,216
1,637

760

61

405
628
2,748
4,241
7,166
9,035
625
1,858
2,162
1,976
4,636
9,467
4,481
1,654
8,234
827
4,339
1,863
3,001
14,736
4,415
846
8,434
2,238
4,931
7,001
5,078
13,693
4,874
4,834
2,308
1,819
4,284
11,695
3,046
171,252

PS
Detections
5,696
1,766
797
65
413
661
2,941
4,583
7,734
9,980
718
2,011
2,244
2,159
5,116
10,076
4,806
1,807
8,834
960
4,718
2,039
3,260
15,972
4,732
920
9,027
2,402
5,414
7,506
5,510
14,534
5,224
5,354
2,393
1,957
4,644
12,818
3,219
185,010

Calls
8,034
5,241
1,385

179
1,353
3,067
9,805
9,852

12,244
17,263
1,917
5,198
8,494
7,607
11,574
22,625
15,124
6,082
17,082
5,310
11,798
8,786
14,204
28,065
13,862
4,656
19,505
7,413
14,194
23,863
19,077
32,704
13,265
14,105
9,096
8,168
12,831
31,786
13,780
470,594

DS
Detections
23,376
17,887
4,260
474
5,062
7,916
25,694
26,822
44,964
71,403
7,461
23,988
39,601
32,392
50,617
97,613
74,821
30,527
61,515
26,836
57,624
46,542
70,311
110,767
71,469
18,281
103,740
36,384
92,180
150,573
120,384
120,038
59,101
64,181
34,812
40,292
54,415
160,051
66,880
2,151,254

SECR
Calls Detections
13,017 29,603
9,413 26,652
2,031 5,449
645 994
2,745 8,059
5,914 13,478
17,253 39,594
13,471 32,540
18,543 58,831
24,685 93,329
6,077 23,668
7,754 33,599
11,035 50,131
11,606 44,150
15,999 63,841
32,473 130,071
20,211 94,934
9,634 50,244
22,490 74,374
10,940 61,045
14,850 73,545
13,483 75,254
19,527 102,889
41,511 150,416
22,998 108,663
8,413 33,255
27,003 144,675
13,296 74,188
20,148 126,636
32,461 245,587
25,667 185,237
44,919 155,537
17,704 76,272
18,861 82,483
13,721 49,921
13,007 69,004
15,942 66,025
46,563 236,151
20,182 101,518
686,192 3,091,842
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Comparison of call density estimates

Estimated call densities per site and year were generally similar for PS and DS — although slightly higher
for PS compared to DS — but often much lower for SECR (Fig. 5, Table 11). These discrepancies between
SECR estimates and PS or DS estimates were unexpected as the analyses were based on the same
detection data (although singletons were included for SECR and excluded for PS and DS). We note that
the use of only three sensors at site 1 in 2012-2014 may have likely increased the uncertainty in
localizations (as opposed to using seven sensors in the normal configuration) and getting accurate
distances (Thode et al. 2012), which may have been part of the reason for the strong discrepancies
between estimated call densities for all three methods in 2013 and 2014.

Table 11 Estimated call density (calls per km? per day) and 95% confidence intervals for each site-year
combination of the bowhead whale study

PS DS SECR

Site Year Estimate 95%Cls Estimate 95%Cls Estimate 95%Cls

1 2007 0.46 0.20 - 1.09 0.38 0.19 - 0.73 | 0.2478 0.2398 - 0.2562
1 2008 0.59 0.26 - 1.30 0.39 0.20 - 0.75 | 0.5908 0.5756 - 0.6065
1 2009 0.33 0.10 - 1.04 0.23 0.12 - 0.44 | 0.2452 0.2281-0.2637
1 2010 0.03 0.01 - 0.08 0.03 0.01 - 0.06 | 0.1584 0.1410-0.1779
1 2011 0.15 0.06 - 0.33 0.15 0.10 - 0.23 | 0.2183 0.2058 - 0.2316
1 2012 0.55 0.24 - 1.23 0.43 0.39 - 0.47 | 0.0059 0.0057 - 0.006
1 2013 3.25 0.95 -11.15 2.49 2.28 - 2.71 | 0.0229 0.0225 - 0.0232
1 2014 6.08 3.98 - 9.29 3.88 3.50 - 4.31 | 0.0211 0.0207 - 0.0215
2 2007 0.45 0.28 - 0.74 0.34 0.24 - 0.48 | 0.2163 0.2114-0.2214
2 2008 4.73 3.57 - 6.26 3.39 2.74 - 4.18 | 1.3607 1.3279 - 1.3942
2 2009 0.26 0.11 - 0.60 0.15 0.10 - 0.24 | 0.0057 0.0056 - 0.0059
2 2011 0.71 0.35 - 1.47 0.68 0.58 - 0.81 | 0.2675 0.2559 - 0.2796
2 2012 0.80 0.28 - 2.26 0.79 0.56 - 1.13 | 0.0102 0.0100 - 0.0104
2 2013 1.02 0.53 - 1.96 0.87 0.58 - 1.31 | 0.7174 0.6950 - 0.7405
2 2014 2,91 2.22 - 3.82 2.40 1.95 - 2.96 | 0.0244 0.0240 - 0.0248
3 2007 0.62 0.36 - 1.08 0.52 0.38 - 0.70 | 0.0054 0.0053 - 0.0054
3 2008 2.47 135 - 4.51 2.60 2.17 - 3.11 | 0.0272 0.0268 - 0.0275
3 2009 0.64 0.28 - 1.45 0.61 0.58 - 0.64 | 0.0089 0.0087 - 0.0091
3 2010 5.86 2.87 -11.95 4.63 3.97 - 5.39 | 0.0287 0.0284 - 0.0291
3 2011 0.34 0.18 - 0.65 0.28 0.25 - 0.32 | 0.0101 0.0099 - 0.0103
3 2012 1.49 1.10 - 2.02 1.23 1.07 - 1.41 | 0.0122 0.0120-0.0124
3 2013 1.93 1.33 - 2.80 1.78 1.63 - 1.95 | 0.0331 0.0326 - 0.0337
3 2014 1.85 1.21 - 2.83 1.61 1.48 - 1.75 | 0.0288 0.0284 - 0.0292
4 2007 0.93 0.56 - 1.56 0.64 0.50 - 0.83 | 0.0066 0.0065 - 0.0067
4 2008 2.24 1.60 - 3.14 1.85 1.67 - 2.06 | 0.0285 0.0281 - 0.0288
4 2009 0.33 0.19 - 0.56 0.30 0.23 - 0.40 | 0.0080 0.0078 - 0.0081
4 2010 3.33 2.08 - 531 2.53 2.22 - 2.89 | 0.0334 0.0330-0.0338
4 2011 0.75 0.44 - 1.27 0.53 0.50 - 0.55 | 0.0122 0.0120-0.0124
4 2012 0.92 0.60 - 1.40 0.79 0.69 - 0.91 | 0.0160 0.0158 - 0.0162
4 2013 2.89 1.89 - 4.40 2.47 2.21 - 2.76 | 0.8195 0.8062 - 0.8329
4 2014 1.69 1.35 - 2.10 1.52 1.34 - 1.73 | 0.0361 0.0357 - 0.0365
5 2007 1.67 0.74 - 3.76 1.30 0.88 - 1.92 | 0.0119 0.0117 - 0.0120
5 2008 2.47 1.75 - 3.49 2.18 1.64 - 2.89 | 0.0220 0.0217 - 0.0224
5 2009 1.90 1.36 - 2.65 1.52 1.19 - 1.93 | 0.0176 0.0174 - 0.0179
5 2010 1.32 0.35 - 4.99 1.12 0.73 - 1.71 | 0.0174 0.0171-0.0177
5 2011 0.70 0.26 - 1.84 0.61 0.55 - 0.68 | 0.0120 0.0118 - 0.0122
5 2012 1.61 0.84 - 3.09 1.36 0.93 - 1.97 | 0.0146 0.0143 - 0.0148
5 2013 12.14 6.63 -22.24 9.54 7.53 -12.08 | 0.1146 0.1136 - 0.1156
5 2014 1.83 0.90 - 3.72 1.75 1.33 - 2.30 | 0.0300 0.0294 - 0.0303
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Comparison of detection functions
Visual inspection of the detection functions showed that, despite a peak in distances near zero, the fit
was generally good for the DS models but poor in most cases for SECR (Fig. 10). However, in several
cases the detection functions seemed to underfit near distance zero (e.g. for $109). These spikes in
detection distances near zero may have been caused by localization uncertainty and resulting random
distance error. They were also often the cause for that chi-square goodness-of-fit test statistics for the
DS models tended to be large and tests significant (Table 7), indicating a poor fit. For the SECR models,
detection probabilities seemed to decay unreasonably slowly with increasing distance from the
sensor. Note, that when DS and SECR detection functions were similar (e.g. site 1 2007:2011 or site 2
year 2007 and 2009), call density estimates were similar for DS and SECR as well (Table 11, Fig. 5).
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Fig. 10 Scaled histograms of distances (km) detected by two or more DASARs per site and year with DS
(blue line) and SECR (purple line) half-normal detection functions

Table 12 Chi-square test statistics rounded to the nearest integer for half-normal detection
functions fitted with DS. All tests were not significant at the 0.05 level

Site 2007 2008 2009 2010 2011 2012 2013 2014
1 8360 1192 803 129 107 253 1972 5501
2 8688 161 1083 241 865 29 33 2396
3 4199 371 619 6726 703 1337 157 165
4| 12,214 1020 202 5270 1803 676 1145 625
5 7060 987 1391 468 421 1349 4881 159
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Comparison of proportion plots

The proportion plots showed strong variability among the different site-year combinations (Fig. 11). If
all our assumptions were met, we would expect these to be similar to the proportion plot shown in
Fig. 2, i.e. the highest proportion of singletons and decreasing proportions with increasing number of
DASARs. However, in 18 of the 39 site-year combinations, this pattern was reversed and highest
proportions were in the all-DASAR category.
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Fig. 11 Proportion plots for each site-year combination included in the case study: proportion of calls
detected by the respective number of DASARs
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We further investigated if at least some of this variability in the proportion plots form Fig. 11 may have
been caused by the variation in DASAR configurations. To this end, we conducted 39 baseline
simulations, one for each site-year combination, as in Section 6.1.1 (Appendix 1) but with the specific
DASAR configuration of the site-year combination. The decreasing proportions similar to that in Fig. 2
was the consistent pattern in the simulations across all site-years regardless of DASAR configuration

(Fig. 12).
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Fig. 12 Proportion plots for simulated call detections at the 39 site-year combinations using all baseline
simulation settings except for the DASAR configuration for which we used the specific configurations
from case study (Fig. 9)
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ABSTRACT:

Over 500000 automated and manual acoustic localizations, measured over seven years between 2008 and 2014,
were used to examine how natural wind-driven noise and anthropogenic seismic airgun survey noise influence bow-
head whale call densities (calls/km®/min) and source levels during their fall migration in the Alaskan Beaufort Sea.
Noise masking effects, which confound measurements of behavioral changes, were removed using a modified point
transect theory. The authors found that mean call densities generally rose with increasing continuous wind-driven
noise levels. The occurrence of weak airgun pulse sounds also prompted an increase in call density equivalent to a
10-15 dB change in natural noise level, but call density then dropped substantially with increasing cumulative sound
exposure level (cSEL) from received airgun pulses. At low in-band noise levels the mean source level of the
acoustically-active population changed to nearly perfectly compensate for noise increases, but as noise levels
increased further the mean source level failed to keep pace, reducing the population’s communication space. An
increase of >40dB ¢SEL from seismic airgun activity led to an increase in source levels of just a few decibels.
These results have implications for bowhead acoustic density estimation, and evaluations of the masking impacts of
anthropogenic noise. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1121/10.0000935
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I. INTRODUCTION sequences defined as *“song,” produced during the winter
season at more southern latitudes (Blackwell er al., 2007;
Stafford et al., 2008; Delarue et al., 2009; Tervo et al.,
2009; Tervo et al., 2011). While bowhead song appears to
serve a reproductive purpose, the functional purposes of the
call repertoire used during the summer remain largely
unknown, although it is suspected that long-range communi-
cation plays one important role.

Each year from 2007 through 2014, the Shell Exploration
and  Production Company (SEPCO) commissioned
Greeneridge Sciences, Inc. to deploy at least 35 Directional
Autonomous Seafloor Acoustic Recorders (DASARs, model
C) [(Greene et al., 2004)], divided unequally among five sites
in the coastal Beaufort Sea. The motivation behind the effort
was to evaluate the potential impact of airgun and other indus-
trial sounds on bowhead whale behavior during their westward

After summering in the castern Beaufort Sea, the
Bering—Chukchi-Beaufort (BCB) population of bowhead
whales (Balaena mysticetus) typically begins its autumn
westward migration in late August (Moore and Reeves,
1993). Unlike the spring migration, the autumn migration
takes place relatively close to the northern shores of Alaska
(Moore and Reeves, 1993). During their travels the animals
produce a wide variety of signals that often defy simple
classification into specific call types (Ljungblad et al., 1982;
Clark and Johnson, 1984; Cummings and Holliday, 1987;
Moore et al., 2006; Blackwell et al., 2007), but past work
has roughly divided calls between ‘“simple” frequency-
modulated (FM) calls and “complex” calls (Blackwell et al.,
2007). These calls are distinct from more extended

“This paper is part of a special issue on The Effects of Noise on Aquatic
Life.
®Electronic mail: athode@ucsd.edu

J. Acoust. Soc. Am. 147 (3), March 2020
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fall migration in the relatively shallow Arctic waters off
Alaska (Blackwell er al., 2013; Blackwell et al., 2015;
Blackwell et al., 2017). Over that entire period, over one

©Author(s) 2020. 2061
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million bowhead whale calls were recorded during the fall
migrations (Blackwell et al., 2015). To our knowledge, no
bowhead song was recorded.

The scale of the dataset, combined with a need for
timely analysis, motivated the development of methods for
automatically detecting, classifying, and localizing bowhead
whale sounds, while exploiting the directional localization
capabilities of the DASAR packages (Thode et al., 2012). A
team of experienced analysts also manually processed a sub-
set of these data from all years, to serve as a consistency
check on the automated results. These combined analyses
have previously been used to track seismic airgun activity
around the Beaufort Sea (Thode et al., 2010), to determine
that the population changes its calling rate in response to
both airguns (Blackwell et al., 2015) and industrial activities
(Blackwell et al., 2017), to establish source levels and the
depth distributions of calling animals during the migration
(Thode et al., 2016), and to demonstrate that over the span
of seven seasons, the distribution of minimum call fre-
quency decreased from a mean of 94 to 84 Hz (Thode et al.,
2017). The previous source level study did not include back-
ground noise level as a covariate in the analysis.

Here, this seven-year automatically-analyzed dataset
and the manually-analyzed subset are used to examine how
both the source level and the spatial density of bowhead
whale calls, or “call density” (calls generated per unit area
per unit time') vary with changes in continuous natural
ambient noise levels and seismic airgun activity. For over a
century it has been known that humans increase their speech
amplitude in response to increases in background noise lev-
els, an effect pithily dubbed the “Lombard effect,” after
Eugene Lombard, who first observed the phenomenon in
1911 (Lombard, 1911; Brumm and Zollinger, 2011;
Hotchkin and Parks, 2013). This effect has also been
reported in multiple terrestrial species (Hotchkin and Parks,
2013) and several marine mammal species, including hump-
back (Megaptera novaeangliae) (Dunlop et al., 2014), right
(Eubalaena glacialis (Parks et al., 2011; Parks et al., 2012;
Parks et al., 2016), and killer whales (Orcinus orca) (Holt
et al., 2009; Holt et al., 2011). Other studies have also noted
changes in call production rate in response to changes in
anthropogenic noise levels (Castellote et al., 2012; Melcon
et al., 2012; Risch et al., 2012), with calling rates generally
decreasing even in the presence of low levels of noise, but
sometimes also increasing (Blackwell er al, 2015;
Blackwell et al., 2017; Di Torio and Clark, 2010). Little lit-
erature exists on how marine mammals adjust calling rate in
response to natural ambient noise fluctuations, but it is now
accepted that many species of marine and terrestrial animals
respond to changes in background noise levels by varying
their source level, call production rate, or call structure/fre-
quency (Bradbury and Vehrencamp, 1998).

Beaufort Sea ambient noise levels are currently domi-
nated by wind-driven sources, since at present shipping and
other persistent human activities minimally impact the over-
all noise environment. The data analyzed in this study thus
provide an opportunity to measure how natural variations in
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an ambient acoustic environment without anthropogenic
noise sources could affect the “communication space” of an
entire baleen whale population, which is defined by (Clark
et al., 2009) as “space over which an individual animal can
be heard by other conspecifics, or a listening animal can
hear sounds from other conspecifics.” These data can also
provide insight into how a baleen whale population, in
aggregate, could adjust its vocal behavior to compensate for
such variations, in an attempt to maintain a fixed communi-
cation space.

Over the seven-year period analyzed, several seismic
airgun surveys occurred at various distances from the study
area. These surveys provide an additional opportunity to
directly compare the acoustic strategies used by a baleen
whale population to compensate for natural and artificial
noise interference, allowing its acoustic response to human
industrial noise to be placed within the context of its natural
noise response.

Demonstrating behavioral changes in source levels and
calling rates in a marine environment is tricky, because
changing background noise levels also affect the likelihood
that a passive sensor detects a sound (Helble ef al., 2013).
Higher noise levels “mask” weaker calls, shifting the
observed source level distribution upward. As a result, both
the measured source level and measured call density distribu-
tions become correlated with background noise level, even if
a population has no actual underlying behavioral response to
these factors. For this reason, this paper will use the term
“measured call density” when discussing raw (potentially
masked) measurements of call density, while the term “call
density” will always refer to the true (unmasked) underlying
call density produced by the population.

Section II develops the theory used in this paper to
account for masking effects, using distance sampling theory
with noise-related covariates. Section III then describes the
geography of the field site, the equipment and deployments,
methods for automated and manual call detection and locali-
zation, sample selection criteria, procedures for measuring
continuous noise and airgun exposure levels, and procedures
for statistical regression. Section IV presents the conditional
probabilities of call density and source level as a function of
background noise level and analysis type (i.e., manual or
automated), as well as regression analyses of source level
and call density vs background noise and airgun cumulative
sound exposure levels (¢SEL). Finally, Sec. V discusses the
similarities and differences between the population-level
response to natural and anthropogenic noise, and outlines
the relevance of these observations to passive acoustic den-
sity estimation.

Il. MODIFIED POINT TRANSECT THEORY FOR
REMOVING MASKING EFFECTS
A. Definition of localization probability P,

An appropriate measure of a population’s behavioral
response to noise is the conditional probability density func-
tion (PDF) that a source level SL is generated, given a fixed

Thode et al.
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noise level NL: p(SL|NL), which is defined here as the behav-
ioral response distribution. If the population does not exhibit
a Lombard effect, then over sufficiently long measuring times
its source level distribution becomes independent of the noise
distribution, such that p(SL\NL):p(SL) and p(SL,NL)= p(SL)
p(NL). This behavioral response distribution is not directly
measured from data; instead, one observes the joint PDF
p(+, SL, NL|R,,.) of the measured bowhead source levels
and associated noise levels, where p(*“+”) indicates the prob-
ability that a call is detected AND localized, and R, is the
maximum range from the closest sensor from which localized
calls are a(:(:eptedA2 This observed, or masked, distribution
represents the probability density of measuring a given noise
level NL and localizing a call with source level SL within dis-
tance R,,,,,. This observed distribution is thus weighted by the
probability that a given noise level p(NL) occurs. The joint
PDF can be estimated from an appropriately normalized two-
dimensional histogram of all measured call samples. The SL
and NL of the joint PDF are always computed using the same
units.
Basic probability theory yields

p(-+,SL, NL|R )
(NL)p(+|SL,NL, Ryarr)’

P(SLINL, Rypar) = 1
p

where we have explicitly retained a potential dependence of
the derived conditional distribution on R,,.., even though
the true underlying behavioral response distribution should
be independent of R,,,.. Equation (1) shows that two correc-
tion factors must be applied to the observed distribution to
obtain the underlying behavioral response distribution. The
first factor, p(NL), the observed distribution of noise
throughout all seasons, converts the observed joint probabil-
ity into a probability conditioned on NL, and is readily esti-
mated from the data. Following Buckland et al., 2012, the
second factor, p(+|SL,NL.R,,..,), can be rewritten as a locali-
zation probability P (SL.NL,R,.), which represents the
average probability that a call within radius R, of the clos-
est sensor is both detected and localized by the system,
given that the call’s source level is SL and the background
noise level is NL. P, depends on source level, noise level,
and the value of R, selected. In principle, the azimuth of a
call with respect to a sensor should also affect P, since the
ability to locate a call depends on the relative location of
other sensors. We found, however, that if all DASARs dis-
tributed at a site were incorporated into estimating p(-+, SL,
NL|R ). the resulting distribution showed no azimuthal
variation.

There are several potential approaches to estimating P,,.
The simplest approach, and the one used here for analyzing
call rates, only uses samples that lie within a small value of
Ryax, so that any sound generated within that radius is
assumed detectable and localizable (P, ~ 1), regardless of
the call’s source level or ambient noise conditions. Past
work on this dataset effectively took this approach by con-
cluding that calls generated within 2km of the nearest
DASAR were always localizable (Blackwell et al., 2015).

J. Acoust. Soc. Am. 147 (3), March 2020

The second approach, used in this source level analysis,
takes advantage of the relatively flat bathymetry and simple
propagation environment surrounding the DASAR sensors
to apply a modified point transect analysis, a particular ver-
sion of distance sampling theory (Buckland er al., 2012).
This approach empirically estimates the localization proba-
bility of a call as a function of both its range to the nearest
sensor and its source level-to-noise ratio (SLNR), thus pro-
viding a means of correcting masking effects out to ranges
of at least 30km. Among other assumptions, appropriate use
of distance sampling theory requires that the mean spatial
density of calling animals (call density), when measured
over long enough intervals, is independent of distance from
a sensor, such that any apparent variation in the measured
spatial density with range can be attributed to changes in the
detectability of calls. Since the DASAR sensors were
deployed in the middle of the migration corridor of bowhead
whales, and the dataset spans multiple years, it is reasonable
to assume that the true call density of animals across the
study site averages out to a constant value, a conclusion that
is supported by the resulting analysis.

A more general approach to treating masking, not used
here, is to conduct Monte-Carlo-type modeling that combines
simulated source signals, propagation modeling, and boot-
strapped noise samples and then passes the resulting synthe-
sized time series through a detector (human or automated) to
numerically estimate a detection probability (Kiisel et al.,
2011; Helble et al., 2013). While this approach can handle
more complex propagation environments and situations where
call densities are heterogencous, this approach is also time
consuming, assumes considerable knowledge about the propa-
gation environment, and can be difficult to evaluate when
multiple humans have been involved in analyzing the original
dataset, due to various biases human operators display when
choosing what to detect and localize (Urazghildiiev and Clark,
2007; Moyer-Horner et al., 2012).

B. Modified point transect theory

Given these assumptions, distance-sampling theory
states that the average localization probability P, can be
computed as follows:

Po(SL,NL, Ry ) =p(+|SL,NL, Rypa.)
R,

Rinax
:J p(+|SL,NL,r)n(r)drEj
0 0

Wg(SL,NL,r)n(r)dr.
(2)

Here r is the range to the closest sensor, and g(SL,NL,r), the
localization function, is the probability that an animal is
localized, given a source level SL, noise level NL and range
r. Note that most distance sampling literature defines g(r) as
the “detection function” and P, as the “probability of
detection,” but here g(r) and P, are defined, respectively, as
a “localization function” and “probability of localization,”
to emphasize that these quantities reflect the probability that
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a call is detected on two or more sensors, and can thus be
localized.

n(r), the probability that an animal is present at range r,
is defined in the distance sampling literature (Buckland et al.,
2012) as “the distribution of distances available for
detection,” an unwieldy moniker that is abbreviated to
“availability function” for the rest of the paper. Under the
assumption of uniform call density, n(r) becomes propor-
tional to the geometric perimeter defined by points that lie at
range r from the sensor.’ The scenario where an animal’s
range is measured from a single location is defined as a point
transect and, under that particular geometry, n(r)=2mr/
anW, 2r/R;’,m. For a simple point transect the availability
function is proportional to the circular perimeter with radius
r. However, the majority of passive acoustic systems that can
measure range (including the configurations to be discussed
here) require at least two spatially distributed sensors to
obtain a distance estimate from the closest sensor. The
requirement for distributed tracking arrays requires modifica-
tions of standard point transects, and as a result 7(r) becomes
a more complex function that depends on the number and
spacing of sensors in the tracking system. The Appendix pro-
vides these modified availability function definitions. We
also re-emphasize that as a consequence of using a distrib-
uted tracking array g(r) actually represents a probability of
localization, instead of the more standard probability of
detection, and for that reason we will continue to refer to g(r)
as a localization function instead of the more standard
“detection function” terminology.

The localization function is generally modeled as a
parameterized “key” function with the property that g(0) — 1
and g(oo) =0. A variety of standard functions exist, includ-
ing the half-normal and uniform, but the best-fit model was
found to be the hazard-rate (Buckland, 1992), since it pro-
vides two adjustable parameters:

- ~b(SL,NL) ’
g(SL,NL,r) =1 —exp <m> NG))

Here ¢ is defined as the scale parameter, as it defines the
range scale over which the localization function begins to
rapidly decrease. Larger values of ¢ indicate higher detect-
ability levels at greater ranges. Meanwhile b, the shape
parameter, defines the “sharpness” of the drop-off in locali-
zation probability with range, with larger values of b indi-
cating a sharper transition. Both parameters are assumed to
vary with source and noise level.

From Eq. (2), the probability ASL,NL,r) of observing a
call at range r becomes

F(SL,NL,r) = 7n(r)g(SL,NL,r)/Po(SL,NL,Ryay). (4)

If M calls with the same source level are observed under the
same noise conditions, each at a range r,, from the sensor,
then the log-likelihood function of these observations is pro-
portional to S log(f(r,)). Applying maximum likeli-

hood methods to Egs. (2)—(4) then yields best-fit estimates
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of the localization function’s scale and shape parameters for
all samples that share the same SL and NL. The R package
Distance provides standard software for obtaining the
maximum-likelihood solution (Thomas et al., 2010) and
was applied here. For reasons detailed in the Appendix,
localization ranges were binned with 250m resolution
before maximizing the likelihood.

Despite the large sample sizes available from this data-
set, the sheer number of possible combinations of source and
noise levels meant that obtaining sufficient sample sizes
could be challenging for many SL and NL combinations.
While “multi-covariate” distance sampling (MCDS) techni-
ques have been developed to handle situations where a detec-
tion function with multiple covariates must be estimated
from limited data (Marques and Buckland, 2004), in this situ-
ation one can exploit the sonar equation to reduce the number
of covariates needed for the localization function.
Specifically, the sonar equation gives the signal-to-noise ratio
(SNR) of a signal with source level SL received on a sensor
at range r as (expressed in dB units) SNR = SL-TL(r)-NL
= [SL-NL]-TL(r) = SLNR-TL(r), where SLNR is the source-
level-to-noise ratio (or SL-NL in dB terms) and TL(r) is the
transmission loss arising from the sound propagating a dis-
tance r through the environment. The sonar equation demon-
strates that signals that originate at the same location and
share a common SLNR will generate the same set of SNR
values across a distributed group of sensors. If we assume
that SNR is the dominant factor in determining the detectabil-
ity for low-frequency, low-directionality signals, then signals
that share the same SLNR should share the same detection
probabilities across all sensors, and thus share the same local-
ization function: g(SL, NL, r)=g(SL-NR, r)=g(SLNR, r).
Thus, the SLNR, which can also be interpreted as a source
level “normalized” by background noise level, becomes the
only relevant covariate for g(r); consequently, all data sam-
ples that share the same SLNR can be lumped together to
estimate the localization function. We found that samples
arranged into 2dB SLNR bins between 52 and 90dB pro-
vided sufficient sample sizes to fit a localization function.
Below 52 dB there were so few localized calls that we felt a
localization function could not be fitted, and thus calls below
52dB SLNR were not incorporated into the analysis.

1ll. METHODS
A. Equipment and deployment configuration

DASARs are autonomous acoustic recording packages
equipped with an omnidirectional acoustic pressure sensor
(sensitivity of —149dBreV/1 yPa) and two horizontal
directional sensors capable of measuring the north-south
and east—west components of acoustic particle velocity. This
arrangement permits the azimuth of received sounds, such
as bowhead whale calls, to be measured from individual
DASARs. Each time series is sampled at 1 kHz with a maxi-
mum usable acoustic frequency of 450Hz due to antialias-
ing filter roll off. Coincident bearings to calls detected on
different DASARSs are combined via triangulation to yield
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two-dimensional call positions, from which the range of each
call to every DASAR can be estimated (Greene et al., 2004).
This ability to measure bearing from a single point allows a
location to be estimated using only two DASARs (instead of
three to four nondirectional sensors), but DASARs still
require modifications of point transect theory (Appendix).

From August to October, 2008 to 2014, between 35 and
40 DASARs were deployed across a 280km swath off the
Alaskan North Slope, on the continental shelf in water depths
between 20 and 53 m. The deployments were grouped into
“Sites,” labeled 1-5 traveling from west to east (Fig. 1).

Most sites included seven DASARs, deployed in a trian-
gular grid with 7km separation and labeled “A” to “G” from
south to north. The analysis presented here merged data col-
lected at Sites 3 and 5, as these sites had identical layouts. The
analysis excludes data from the first year of the study (2007),
when a different type of sensor was used in the DASARSs.

Bowhead whale calls in the raw acoustic data were post-
processed two ways: by a team of human analysts, and by a
six-stage automated detection and localization program. Both
approaches have been extensively described and evaluated in
other publications (Thode er al., 2012; Thode et al., 2016;
Thode et al., 2017). Regardless of the particular approach
used, each detected call event on every DASAR was assigned
a start time, duration, frequency bandwidth, and range. Call
events matched between DASARs yielded both a 2-D loca-
tion estimate and uncertainties in azimuth and range.

B. Sample selection criteria

Call detections and localizations varied in quality, so
three selection criteria were applied to determine whether a
particular call was included in subsequent analyses:

(1) A call’s localized range to the closest DASAR had to be

less than a threshold value R,,,,. Two values of R,,,,—

3.5 and 30 km—are examined in Sec. IV. The 3.5km

threshold was selected because the distance sampling

analysis showed that DASARs are effective for detect-
ing and localizing these calls for most source level val-
ues, regardless of ambient noise conditions (Blackwell
et al., 2013). These data are thus assumed to be unaf-
fected by noise masking, but yield smaller sample sizes.
The 30 km range cutoff permits larger sample sizes, but
must be corrected for masking effects.

(2) The frequency band covered by the call’s fundamental
component had to lie between 20 and 170Hz, a low-
frequency cutoff enforced in order to justify the assump-
tion of an omnidirectional call directivity.

(3) For analyses involving call source level (but not call den-
sity), the call’s estimated source level had to be within 6
dB of the source level computed from any other DASAR
detecting the same call, a metric dubbed the “discrepancy”
in Thode et al. (2016). This procedure provides a safe-
guard against the possibility that the automated algorithm
captured only a small fragment of a call, generating an
inappropriate source level value. Had only a fragment of a
call been captured on one or more DASARSs by the auto-
mated detection process, then the estimated source level
would vary between the DASARSs and the discrepancy of
the call would be high. A more restrictive 3 dB discrep-
ancy criteria was found to lower the sample size substan-
tially, but not change the statistical regression results.

Filtering call samples by their range uncertainty had lit-
tle impact on the estimated localization function, even
though calls generated at ranges greater than 20 km from the
DASAR site displayed substantial range uncertainties. Thus,
call samples were included in the two sets (manual and auto-
mated) regardless of their range uncertainty.

C. Metrics for continuous in-band noise and airgun
survey exposure

Calls that passed the above criteria were assigned the
source level (SL) and noise level (NL) values derived from
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FIG. 1. (Color online) Locations of passive acoustic deployments. (a) North Slope of Alaska; (b) DASAR deployments. (c) Closeup of Site 5 deployment

and bathymetry.
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the DASAR closest to the call’s position. We assumed that
the noise level measured at a DASAR was the same as the
noise level experienced by a whale within 30km range,
because noise levels between DASARs at the same site gen-
erally varied by only a few decibels over the same time
interval.

Noise levels associated with each call were computed
by extracting a time series that had the same duration and
bandwidth as the call, but starting 3 s before the start of the
call sample. A 3s time shift was chosen because most bow-
head whale calls have less than 2 s duration, and an extra
buffer second was added to reduce the possibility that any
signal energy from a bowhead call might contaminate the
noise sample. The noise sound exposure level (SEL), root-
mean-square (RMS) sound pressure level (SPL), and peak
power spectral density (PSD) were computed by band-pass
filtering the noise sample over the same bandwidth as the
call. The possible presence of airgun signals or other nonsta-
tionary transients in the noise sample was checked by com-
paring noise metrics from the first half of the noise sample
with the second half. Metrics that differed by more than
3dB led to that particular sample (noise and associated call)
being rejected from further consideration. Repeating these
analyses with noise samples taken after each call yiclded no
change in the results.

Noise levels were also calculated over a fixed band-
width between 20 and 170 Hz for each call, in order to allow
the “in-band” noise levels to be compared with more famil-
iar fixed-bandwidth measurements. We found that RMS
fixed-bandwidth measurements were generally 15 dB greater
than a typical in-band RMS measurement. For R,
=3.5km the in-band noise sample bandwidth distribution
was skewed, with mean, median, and mode values of 52, 46,
and 32 Hz, respectively, with 25 Hz standard deviation. For
the 30km limit the distribution values shift slightly lower
(45, 38, 24 Hz; 24 Hz standard deviation), reflecting the fact
that more distant calls display narrower received bandwidths
due to propagation attenuation. Thus the 15dB difference
between the in-band and fixed 150 Hz bandwidth noise sam-
ples must arise partially from the reduction in noise sample
bandwidth [10log;¢(50 Hz/150 Hz) ~ 5 dB] with the remain-
der arising from larger noise levels at lower frequencies
(a spectral tilt exists in the noise spectrum).

Seismic airgun activity was detected using the same
automated algorithm described in detail by Thode et al.
(2012) and Blackwell er al. (2015). Seismic activity was
designated as “present” for a given call on any DASAR if at
least one airgun pulse was detected on DASAR G at the
same site within 5 min of the detected call. The motivation
for using DASAR G data was that it was the deepest loca-
tion at each site, and thus offered the best probability of
detecting the greatest number of airgun pulses of all the sen-
sors at the site. Using detection criteria from the deepest
location thus acted as a safeguard against missing pulse
detections on shallower DASARs. If airgun pulses were
associated with a call, then the cumulative sound exposure
level (¢SEL; dB re 1 ,uPaz—s) was measured over the 10-min
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window centered around the call, the same metric used by
Blackwell et al. (2015). However, that previous study mea-
sured ¢SEL over fixed nonoverlapping 10-min intervals,
while here the ¢SEL associated with each call was inte-
grated over all airgun pulses detected within Smin of a
given call. The integration only included time windows
when an airgun pulse was deemed present; bowhead whale
calls and ambient wind-driven noise were thus excluded
from the ¢SEL calculation. The ¢SEL calculations were also
computed over the entire 10-450 Hz bandwidth, consistent
with Blackwell et al. (2015).

D. Call density analysis

Blackwell et al. (2015) previously analyzed the rela-
tionship between call density and seismic airgun activity,
but did not include ambient noise level as a predictor vari-
able. That study computed call density by counting call
localizations that occur within contiguous, nonoverlapping,
10-min windows that start at the top of the hour.
Localizations were only counted if they occurred within
2km of the closest DASAR, entirely sidestepping the issue
of masking effects by assuming a localization probability of
one for all calls within 2km range. The call counts within
these “cell-time intervals” were then used as the dependent
variable in estimating the impact of seismic airgun sounds
on call density (and thus underlying call production rates).

The main issue of applying this method to the present
study is that it cannot distinguish between times when ani-
mals are present but silent, and when animals are not present
at all, so the resulting cell-time interval samples have many
zero values that bias the subsequent measured call rate dis-
tribution. There are also boundary artifacts, in that the mea-
sured density assigned to calls that occur at the start of a
new time window are not influenced by the presence of calls
detected at the end of the previous window. Furthermore, it
is challenging to define ambient noise level for a collection
of calls with different frequency content. For this reason, a
modified version of the analysis was applied here. For a
given call localized within 3.5km of a particular DASAR,
all other calls detected within 5 min of that given call (and
also located within 3.5km of the same particular DASAR)
were tabulated to assign a measured call density to the given
call, along with its associated noise level. While the fre-
quency range of the calls remained restricted to values
between 20 and 170Hz, the calls’ discrepancies or other
localization features were not used to filter calls, because
the discrepancy criteria is relevant only for evaluating
source level and not whether a call was generated close to a
DASAR. By selecting R, equal to 3.5km, we assumed
that all calls generated within that radius were successfully
localized, a strategy similar to that used for Blackwell et al.
(2015). That particular study used only a 2km radius; the
choice of a larger 3.5 km radius for this analysis will be jus-
tified in Sec. IV B.

Assigning a unique call density to each sample ensured
that call density was only measured whenever animals were
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present, and avoided the boundary artifacts mentioned above.
However, centering a time window on each individual call
created samples that were not statistically independent; the
auto-covariance between call density measurements 50 sam-
ples apart was 0.5, which only fell to 0.1 at 250-sample lag
separation. Given a median time separation of 3 min and 23 s
between samples, these lag scales are the time equivalent
3 and 14 h, respectively.

A preliminary regression analysis using generalized
estimation equations (GEE) (Dobson and Barnett, 2008)
with a first-order autoregressive covariance structure found
that although measured call density samples were correlated
in time, the impact of nonindependent samples could be
neglected. Although call densities for adjacent samples were
highly correlated, the regression results from GEE were vir-
tually the same as a conventional generalized linear model
(GLM), because the time scale used for the complete analy-
sis (months) was much greater than the correlation window
in the data (hours). The statistical analysis thus focused on
the GLM regressions.

Distributions of call density had a long tapering tail to
the right (higher densities), but a normal probability plot
showed that the logarithm of call density fit a normal distri-
bution, so measured distributions were formulated in terms
of logarithms. The relationship between the logarithm of
calling density, noise level, and cSEL was computed with a
GLM using a polynomial fit up to fourth-order with interac-
tive terms permitted between noise and ¢SEL, and assuming
a normal distribution for the response variable. Calls (and
their associated call rates) were separated into sets where
airgun activity was either present or absent. Separate models
were fitted to each nonoverlapping dataset, in order to
implement an efficient dose-response model for airgun
activity for the airgun-present dataset. For calls detected
without airgun presence, in-band noise level was the only
predictor variable, while the calls detected during airgun
presence used in-band noise level and ¢SEL as predictor
variables. The Bayes Information Criterion (BIC) was used
to establish the highest-order terms permitted in the model.
The resulting residuals were examined to confirm the fit was
a normal distribution.

E. Source level analysis

Call received levels and positions were combined with
an acoustic propagation model to derive the estimated
source level of the call within the 20-170Hz frequency
band, under the assumption that the low-frequency acoustic
radiation propagating from the animal was omnidirectional
(i.e., the source level would be the same regardless of the
animal’s aspect relative to the sensor). Three different prop-
agation models were tested: a 15logR power-law transmis-
sion loss model, a Pekeris waveguide model, and a normal
mode propagation model that incorporated source depth,
sound speed profile, water depth, and bottom sediment pro-
file (Thode et al., 2016). All three models yielded results
within three dB of cach other in terms of source level
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distribution estimates, so the simple power-law transmission
model was retained for the rest of the analysis.

Source levels were computed using four metrics: sound
exposure level (SEL; dBre 1 /LPaz—s @ 1 m), root-mean-squarc
sound pressure level (SPL; dBre 1 yPa @ 1 m), and median
and maximum power spectral density (PSD; dB re 1 /tPazl
Hz @ 1 m). The last two metrics were estimated by comput-
ing a spectrogram of the call using a 512-point fast Fourier
transform (FFT) with 90% overlap, collating all time-
frequency cells (Af=1.95Hz; At=>51.2 ms) that lic within
the “bounding box” of the call localization, and extracting
the median and maximum PSD values from the resulting
distribution. The call duration was simply defined as the
duration of the bounding box. Calls that had noise samples
contaminated by airgun signals were rejected.

The regression analysis of the masked source level dis-
tribution followed a procedure similar to that of the call rate
analysis. For each combination of localization method (man-
ual; automated) and R, (3.5, 30km), calls were divided
according to whether airgun activity was absent or present.
Calls belonging to the airgun-absent set were fit using a nor-
mal GLM to up to a fourth-order polynomial regression
using in-band noise level as the only predictor variable, and
using the BIC to set the maximum model order. Calls in the
airgun-present set included ¢SEL as an additional, poten-
tially interactive, parameter.

The regression analysis for the unmasked source level
distribution required some additional steps. The original raw
call samples were binned according to airgun c¢SEL level,
with the bins being defined as 0 (no airgun presence) and
within the 90-140 dB range, with 2dB increments. For every
¢SEL bin £, the N, joint observations of source level SL and
noise level NL that existed in that bin were used to construct
a normalized two-dimensional histogram estimate of the joint
PDF p(+, SL, NL|R,.» ¢SEL). The SLNR of each histogram
bin was then calculated, and the appropriate value of P,(R,,,..
SLNR), as computed from point transect theory, was divided
into the bin value to generate the unnormalized unmasked
joint probability p(SL, NL|R,,.., ¢SEL). (We thus assumed
that the presence and intensity of airgun survey activity did
not influence call detectability). After every histogram bin
was readjusted, the entire distribution was renormalized (so
that integrating the joint distribution over all values of NL
and SL yielded one). We then numerically resampled this
unmasked joint distribution N; times to generate N; new joint
estimates of SL and NL for ¢SEL bin k. The complete set of
resynthesized observations was then applied to the same
regression analysis as the original masked samples.

Two additional statistics were also computed: the behav-
ioral response distribution p(SLINL) (defined in Sec. ITA)
and the derivative of the regression curves with respect to in-
band noise level, defined here as the “behavioral sensitivity.”
The behavioral response distribution was obtained by calcu-
lating the marginal distribution p(NL) for both masked and
unmasked distributions, and then using Eq. (1).

The behavioral sensitivity reveals how the mean source
level of the calling population increases with respect to a
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Dataset criteria Method Max range (km) Site 3 Site 5 % with airgun Total

All samples (Sites 3 and 5) Manual 49940 64207 114147
Automated — 361149 402379

Short range Manual 35 4727 5381 44.11 10108
Automated 35 42662 46915 21.73 89577

Long range Manual 30 18673 21865 45.95 40538
Automated 30 198 144 206328 21.45 404472

unit increase in noise level (ASL/ANL), and thus indicates how
“sensitive” a population’s acoustic behavioral response is to
ambient noise fluctuations at various in-band noise levels. For
example, a ASL/ANL value of one at all noise levels would
indicate that the population’s mean source level increases 1 dB
for every 1dB increase in ambient noise level, regardless of the
original ambient noise level involved: a perfect Lombard
adjustment. By contrast, a sensitivity value of zero at all noise
levels would indicate the population’s source level distribution
is completely indifferent to ambient noise changes.

IV. RESULTS
A. Sample sizes

Table T shows the call sample sizes available from the
four different datasets. Sites 3 and 5 contributed roughly equal
numbers of samples to the analysis, even when the range, fre-
quency, and discrepancy restrictions are applied. Although the
manual datasets are only ~10% of the sample size of the auto-
mated results, they had nearly double the percentage of calls
associated with airgun pulses when compared with the auto-
mated datasets. The reason for this is that the manual analyses
were originally intended for use in evaluating the impact of
airguns on bowhead whale behavior, so the subset of days
selected for manual analysis was not sampled randomly.

B. Distance sampling analysis

Figure 2 displays histograms (normalized in terms of
probability density) of the distribution of localized calls

from the automated long-range dataset, as a function of
range from the closest sensor and for three different values
of SLNR: 62, 72, and 82 dB. Overlaid on the histograms are
the best-fit estimates of Eq. (4), fASLNR,r), using the hazard
rate model of Eq. (3) and the seven-sensor availability func-
tion defined in Eq. (A2), Appendix.

Each curve matches the observed distribution well. As
the SLNR increases, the most probable range for localizing
a call increases: a natural consequence of point transect the-
ory, since larger numbers of calls are available at greater
ranges, and calls become more detectable as their relative
source level increases. The good fit between the data histo-
grams and the theoretical curves justifies the assumption of
an uniform spatial distribution of the migration coordinator,
which accumulated across multiple years.

The top row of Fig. 3 replots this observed and modeled
Jf(r|SLNR) as two-dimensional images with respect to both
range and SLNR (in 2dB increments), illustrating that calls
with 52 dB SLNR seem to be the lower limit for localization
capability with the 7-km-spaced array at this study site.

The middle row of Fig. 3 displays the corresponding
empirical and modeled localization function g(SLNR, r) as a
function of range and SLNR. We also estimate g empirically
[Fig. 3(c)] by dividing the observed f(r|[SLNR) by the avail-
ability function n(r) [Eqgs. (4) and (A2)] and setting the max-
imum value attained to 1.

Even with large sample sizes, relatively few high-
SLNR signals occur at small ranges, so the upper-left region
in Fig. 3(c) is undersampled simply because of the low
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FIG. 2. Observed call range distribution ASLNR,r) at Sites 3 and 5 combined, using long-range automated analysis (Table I), evaluated at three different
source level-to-noise ratios (SLNR): (a) 62 dB; (b) 72 dB; (c) 82 dB. Histograms have been normalized to approximate probability density functions (PDFs).
Dark circles represent modeled fit of f [Eq. (4)] assuming a hazard-rate localization function [Eq. (3)] and a distributed sensor availability function (A2). For
each localization at Sites 3 and 5, only the range to the closest DASAR is used.
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SLNR (dashed line = 65 dB, the SLNR with 99% localization probability at 3.5km range). The figure illustrates that over 80% of calls have SLNR levels

that exceed 65 dB.

probability that a relatively rare loud call is produced at
close range. This undersampling thus generates artificially
low values of the estimated g(r) in this region. The modeled
form of g(r) in Eq. (3) [Fig. 3(d)] is not influenced by under-
sampling, since Eq. (3) forces the model into maintaining
monotonic decreases in detectability with increasing range.
Both the estimated and modeled localization functions dis-
play similar behavior at greater ranges, with the shoulder of
the localization function (point at which the localization
function begins decreasing substantially) increasing with
larger SLNR, as expected. Figure 3(e) shows the values of
P (SLNRR,,.) derived from the localization function using
Eqgs. (2) and (A2), while Fig. 3(f) displays the cumulative
distribution of SLNR values from the observed data.
Subplots (e) and (f), when taken together, support earlier
conclusions by Blackwell et al. (2015) that calls located
within 2 km of the closest sensor are virtually always detect-
able: for example, the two subplots combined demonstrate
that calls within 2 km range and with SLNR >60dB (which
comprise 90% of all calls) have a >0.99 probability of being
detected. If R,.,,=3.5km [vertical line in Fig. 3(e)], then
calls with 65 dB SLNR or higher, which comprise over 80%
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of the calls [dashed line in Fig. 5(f)], have a 99% probability
of localization. The choice of R, = 3.5km, instead of
2km, for the call density analysis in Sec. IV C, was made in
an attempt to balance sample size against potential masking
effects. While using locations less than 2km would have
eliminated all possibility of masking, only 2748 samples
would have been analyzed, too few to allow a robust regres-
sion of source level vs noise level. Using 3.5 km as an upper
limit quadrupled the sample size (Table I) while only raising
the prospect of masking for the weakest calls.

Figure 4(a) shows the best-fit values of the scale (o)
parameter in Eq. (3) as a function of range and analysis
type, and confirms that the “shoulder” of the localization
function increases with increasing SLNR, rising from less
than a kilometer at 52dB to nearly 30km for an 85dB
SLNR.*

For a fixed SLNR, the manual analysis generally yields
a larger scale parameter than the automated analysis, imply-
ing that the human analysts are able to localize weaker sig-
nals. As discussed in Thode et al. (2012), the automated call
localization algorithm sets a RMS detection threshold of
8dB over 50 Hz bandwidth, so it is not surprising that the
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FIG. 4. (Color online) Scale “o” (a) and shape “b” (b) parameters of hazard
rate localization function vs SLNR for both automated (black) and manual
(red) data analysis. Small dots indicate standard error of parameter fits.

effective localization range of the automated procedure is a
few kilometers smaller than the manual analysts’, who can
detect calls much weaker than 8 dB SNR in spectrograms.
Beginning at 70dB SLNR, the manual scale parameter
begins to taper off, crossing below the automated scale at
76dB SLNR. We interpret this tapering off as an artifact
arising from the relatively few samples available at high
SLNR for the smaller manual dataset.

Figure 4(b) shows the variation of the shape parameter b,
which determines the sharpness of the localization cutoff. The
results suggest that, at low SLNR values, human analysts have
a sharper cutoff in their localizing ability (i.e., they can local-
ize most calls out to the range defined by the scale parameter,
then drop off quickly beyond that). However, once the SLNR
increases past 68 dB, the automated algorithm achieves a
sharper cutoff. The decrease in the shape parameter for the
manual analysis at high SLNR levels may be a sample size
artifact, and not a fundamental measurement of human locali-
zation performance at high SLNR values.

C. Call density vs continuous in-band noise levels
and seismic airgun exposure

As a reminder, the term “call density” in this section
refers to a call density estimate where noise masking effects
have either been removed or deemed negligible.

Background in-band noise levels and airgun ¢SEL lev-
els were correlated with Pearson correlation coefficients of
0.23 and 0.26 for the respective manual and automated
short-range datasets, because only airgun pulses with higher
¢SEL can be detected at high noise levels. This correlation
is the reason why a fourth-order polynomial fit was the
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highest possible for the regression analysis, because
attempts to fit higher orders became numerically unstable.

Figure 5 (left column) displays the log-normal regres-
sion prediction results of call density vs background noise
intensity, for situations where seismic activity is nonexistent
(red dashed line), present at small levels (cSEL of 100dB re
1 uPa’-s; green solid line), and present at moderate/heavy
levels (cSEL of 120dB re 1 uPa’s; gray dashed line). The
right column shows the predicted call rate vs airgun ¢SEL
level at a fixed in-band SPL noise level of 90dB. The top
and bottom rows represent the manual and automated
analyses.”

Restricting our attention to the automated regression
analysis results [Figs. 5(c), 6(c), and 5(d)], we find that
whenever airgun activity is absent [dashed gray line in Fig.
5(c)], call density increases from roughly 0.2 to 0.4 calls/
min within 3.5 km range as the ambient noise levels increase
from 65 to 105 dB (40 dB), although the response tapers off
beyond 95 dB.

Replicating previous research on the same dataset
(Blackwell et al., 2015), Fig. 5(c) shows that the presence of
even low levels of seismic activity results in an increase in
call density, given the same fixed background noise level.
For example, at weak airgun exposures of 100dB c¢SEL, the
call density normally produced at background noise levels
of 90dB RMS [vertical black line in Fig. 5(c)] increases
31% from 0.38 to 0.5 calls/min. In order to return to the
baseline call density, ambient noise levels would have to
decrease 12dB to 78. The presence of airgun pulses there-
fore boosts call density by 23% to 40%, depending on the
initial ambient noise level.

In contrast, as seismic survey c¢SEL levels continue to
increase, call densities are gradually suppressed. Although
not shown in Fig. 5, at 115dB c¢SEL call densities match
those produced at ambient baseline levels. At higher levels
call densities become suppressed below baseline states, as
can be seen for the red curve in Fig. 5(c) for 120dB cSEL.
If the in-band noise level is 90 dB, an increase in the ¢cSEL
from 100 to 135 dB roughly halves the call density from 0.5
to 0.25 calls/min. Thus a 40dB SPL increase in in-band
ambient noise level prompts roughly the same response as a
35dB decrease in airgun ¢SEL (when the airgun ¢SEL does
starts at high levels).

As discussed previously, if noise levels are measured
over a fixed bandwidth of 20-170 Hz, the resulting noise
levels are roughly 15dB higher than the in-band levels
reported in the previous paragraph.

‘When airgun presence is treated as a simple categorical
variable (no ¢SEL value incorporated), the regression finds
no significant relationship between call production rate and
airgun presence.

D. Call source level vs continuous in-band noise
levels and seismic airgun exposure

Figures 6 and 7 display various joint and conditional
probabilities of source and background noise levels,® dis-
played on a logarithmic scale (log-10), for the various
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FIG. 5. (Color online) Regression analysis of call density vs in-band ambient noise level [SPL (RMS)] and airgun cSEL. The top and bottom rows display
manual and automated analyses, respectively. (a) Call density vs ambient noise level when no seismic activity is present (black, dashed), when seismic activ-
ity generates 100dB re 1 Pa’-s ¢SEL (green, dashed), and when seismic activity is 120dB (red, dashed). (b) Call density vs seismic ¢SEL, with ambient
noise level fixed at 90 dB SPL [black vertical line in subplot (a)]. The green and red vertical lines indicate the cSEL levels held fixed in subplot (a). Subplots
(c) and (d) show the corresponding automated regressions. Shaded regions represent 5%-95% confidence intervals for nonsimultaneous bounds, and the hor-
izontal span of the curves cover the 1st through 99th percentiles. All call density values have been transformed back from the log-transformed regression

models.

datasets provided in Table 1. Figures 6 shows manual loca-
tions, restricted to ranges less than 3.5 km from the closest sen-
sor. Figure 7 uses locations up to 30km range from the
automated dataset.” All units are expressed in terms of dB
sound pressure level (RMS SPL); results computed in terms of
sound exposure level (SEL) and maximum power spectral den-
sity (mPSD) generate the same overall patterns and are not
reproduced here. All figures follow the same format, with joint
probabilities in the left column, probabilities conditioned on
noise level in the right column, and marginal distributions of
noise and source levels in the middle column.

The top rows [subplots (a) and (c)] in Figs. 6 and 7
show the observed distributions, uncorrected for masking
effects, while the bottom rows [subplots (d) and (f)] display
the results of applying the P, values from the distance
sampling methods presented in Sec. IILE, thus correcting for
noise masking effects. A comparison between the masked
(top row) and unmasked (bottom row) distributions of Fig. 6
(R,.0x = 3.5km) shows little difference in the distributions,
validating the argument that using R,,,,=3.5km removes
most masking effects.

Subplot f on the lower right of both figures shows the
final estimated behavioral response distribution p(SL|NL).
Some of these behavioral response distributions contain
SLANR values less than 52 dB, and so have not been corrected

J. Acoust. Soc. Am. 147 (3), March 2020

with a P, value, generating a 45° spurious sharp cutoff in the
figure [e.g., Fig. 7(f)]. Figure 7 also shows evidence of arti-
facts at very high source and noise levels, where small sam-
ple sizes have been inflated by very low Pa values. When
these artifacts are ignored, one sees a strong Lombard effect
in both the masked and unmasked data, with the mean source
level increasing with background noise level.

Figure 8 displays regressions of both source level (top
row) and behavioral sensitivity (ASL/ANL; middle row) for
data samples when seismic airgun survey noise is present.
The bottom row plots the modeled relationship between
source level and airgun survey c¢SEL level. The modeled
SPLs are shown for the masked and unmasked behavioral
response distributions (left and right columns) as a function
of background noise level, analysis type, and Rm,,c.5

V. DISCUSSION

A. Relationship between source level, ambient noise,
and airgun exposure

Figure 8(a) demonstrates a clear Lombard effect for all
four datasets, with the mean source level rising 20 to 25 dB
over a 30-40dB increase in noise. However, the mean
source level regressed from the long-range dataset (R, .
= 30km) is several dB greater than that of the short-range
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FIG. 6. (Color online) Various stages of computing the underlying conditional probability density p(SL|NL) from the observed joint distribution of source
level and noise level p(+,SL,NL), using the “short range” manually analyzed data (N =10 108; R,,,,, = 3.5 km) from Table L. (a) Observed joint distribution
p(+,SL,NL); (b) marginal distribution of observed source level [p(+, SL); black] and underlying unmasked source level [p(SL); red]; (c¢) observed source
level distribution conditioned on noise level p(+,SLINL)= p(+,SL,NL)/p(NL); (d) underlying unmasked joint distribution of p(SL,NL)=p(+,SL.NL)/
PL(SLNR); (e) observed (black) and underlying unmasked (red) cumulative background noise distributions, where each noise sample is computed over a
unique bandwidth that matches the call; (f) underlying unmasked source level distribution conditioned on noise level [p(SL|NL); Eq. (1)]. Small black circles
indicate mean polynomial regression of source level with respect to noise level. All units are in terms of sound pressure level (dB re 1 &#120583;Pa, RMS).

Diagonal white lines illustrate points that share a constant SLNR of 64 dB (for manual analyses) and 68 dB (for automated analyses).

set. The reason behind this difference arises from masking
effects on weaker calls, and not due to errors in the transmis-
sion loss function used to estimate source level. Permitting
call samples to be collected from a larger region biases the
samples toward louder calls: the effective sampling area for
weaker calls will be smaller than that for louder calls, as
weaker calls cannot be detected out to the cutoff range R,,,,,..
By applying the masking correction factors from Fig. 3(e)
and recalculating the regression from the resampled distribu-
tion, the discrepancy between the sampling ranges becomes
substantially reduced [Fig. 8(b)]. The distance sampling
unmasking approach described in Sec. I1 B is thus validated.
The behavioral sensitivity for both the masked and
unmasked regressions (Fig. 8, middle row) shows that at
low in-band noise values, the short-range analyses display a
nearly perfect compensation for ambient noise variations,
with sensitivities just above 1. For the same noise values the
corresponding long-range sensitivities are lower, lying
between 0.6 and 0.9. As noise levels increase, the sensitivi-
ties for all analyses decline steadily, corresponding with a
gradual shrinking of the population’s communication space.
While the exact details of the decline vary between the

2072 J. Acoust. Soc. Am. 147 (3), March 2020

analyses, the sensitivities of the masked regressions fall to
nearly zero at high noise levels between 95 and 105dB,
indicating that the population is no longer able to adjust
(increase) its source level at these higher noise levels, which
correspond to the 90-99th percentiles of the noise distribu-
tion [Fig. 7(e)]. Unmasking the distribution still reveals this
sensitivity decrease, although at very high noise levels the
sensitivities do not fall to zero, which may be a spurious
artifact from low sample sizes.

By contrast, the population barely changes its source
level in response to increasing airgun activity [Figs. 8(e) and
8(f)]: over a 40dB increase of ¢cSEL the mean source level
increases by just a few dB, yielding a low behavioral sensi-
tivity with respect to airguns. This result is not initially puz-
zling, since seismic airgun signals are impulsive, and one
might expect that the animals would not need to raise their
source levels to avoid the noise, but would simply increase
their call production rate in order to transmit a call during
times when the airguns are silent. However, seismic survey
noise is not completely impulsive; previous work (Guerra
et al., 2011) has shown that continuous reverberation can
exist between the airgun pulses during a seismic survey, and
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FIG. 7. (Color online) Same as Fig. 6, except displaying long-range automated data (N =404 472; R, = 30 km) from Table L.

thus one would expect the animals to raise their source lev-
els as the diffuse reverberation levels rise. Perhaps that is
the explanation for the mild increases in source level as the
¢SEL airgun noise level increases.

B. Implications for passive acoustic population
density estimation

This work has two implications when applying passive
acoustic monitoring to density estimation: first, when con-
verting measurements of call production density into esti-
mates of underlying animal density and abundance; and
second, when trying to estimate call density over short inter-
vals within a season, a situation where the “pooling
robustness” assumption of distance sampling is violated.

1. Converting call production density into animal
density

While a variety of methods exist for estimating the true
(unmasked) underlying call density of animals, translating
this density into an animal density is difficult because an
individual’s call production rate depends heavily on the ani-
mal’s behavioral state as well as other environmental, eco-
logical, and contextual factors that influence behavior
(Ellison et al., 2012). The work presented here lists another
behavioral factor—natural and anthropogenic noise—which
should be considered when estimating long-term abundance
or abundance trends.

J. Acoust. Soc. Am. 147 (3), March 2020

For example, to learn whether the bowhead whale popu-
lation off Alaska is increasing over time, one must compare
call density estimates across years in order to obtain relative
trends. This work shows that in order to measure accurate
population trends using passive acoustics only, two correction
factors should be applied to raw counts of measured call den-
sity: a noise masking correction, and then a behavioral correc-
tion to adjust call production rates for Lombard effects. The
former correction can be achieved by standard distance sam-
pling methods, if one fitted a separate localization function for
cach season, but the latter correction would still need to be
applied as well, because localization distance functions can
only correct for masking effects, and not behavioral effects.

In principle the behavioral correction would not be
required if the underlying noise distributions (natural and seis-
mic) between seasons were the same, but in reality, seismic
survey activity varies widely across years. Even mean ambient
noise level percentiles varied by up to 4dB across the study’s
lifetime (Thode et al., 2017), which translates into changes of
call density of 0.3 to 0.4 calls/min per unit area: a nearly 33%
shift. Thus, call rates should be corrected for both masking
and behavioral noise effects if passive acoustics is used to
precisely estimate long-term, multi-seasonal trends.

2. Addressing breakdowns in pooling robustness

The explicit incorporation of noise levels into distance
sampling theory becomes relevant in situations where call
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density is estimated over relatively short intervals, such as if
one were to estimate a time series of relative animal abun-
dance throughout a single season. Under these circumstan-
ces, the so-called “pooling robustness” property of distance
sampling becomes invalid, and it becomes useful to explic-
itly incorporate noise levels as a covariate into the localiza-
tion function estimate.

Pooling robustness is often invoked to explain why dis-
tance sampling theory generally neglects the impacts of
noise on acoustic density estimation. The concept is
explained by Burnham et al. (2004, p. 19):

“In reality, detection probability does not depend on
distance only. It may depend on the ability of the surveyor,
the characteristics of the individual animals, environmental
or weather conditions, and a host of other factors.
However, when animals at zero distance are detected with
certainty [g (0) = 1], then providing that the fitted detection
function model is flexible enough, distance sampling esti-
mators of abundance and density are unbiased even though
all things other than distance are ignored in estimating
detection probability. This property, known as ‘pooling
robustness’, is a very powerful feature of distance sampling
methods.”

Thus, noise masking effects, one of these “other factors,”
can often be neglected if enough data are sampled from enough
circumstances to reproduce the underlying noise statistics.
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Buckland et al. (2015), however, provide a warning
about blindly applying pooling robustness (p. 55): “If a sur-
vey region is stratified into two habitats, and detectability is
lower in one habitat than the other, the stratum-specific
abundance estimates will again be biased, if we assume that
the same detection function [will be applied] to both habi-
tats. Total abundance across habitats will only have the
pooling robustness property if effort is in proportion to stra-
tum area. For example, if one stratum is twice the size of the
other, it should have twice the survey effort.”

Expressing this caution in terms of call detectability in
noise, PAM distance sampling estimates that ignore noise
are unbiased only if calls are sampled in a way that reflects
the true underlying distribution of SLNR, which in turn
relies on the true underlying distribution of noise levels. If
the noise conditions associated with a set of call samples are
not representative of the overall long-term noise distribution
used to create the localization function, then the resulting
call density estimates will be biased. If the call samples are
collected under unusually quiet conditions, then the density
estimates will be biased high. In particular, if one is trying to
compute call densities at weekly intervals, it is risky to use a
localization function computed using all samples collected
across the season, because it is not guaranteed that the noise
conditions experienced over one week’s time are representa-
tive of noise levels (or seismic ¢SEL activity) captured over
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an entire season. At the very least, when constructing a call
abundance time series the temporal and spatial consistency of
ambient noise statistics should be confirmed.

If noise statistics are not stationary (consistent), at least
two approaches exist to rectify this situation. The first is to sub-
divide the call samples so that each set shares similar detectabil-
ity conditions, and then assign a separate localization function
to each. An example of this strategy is creating a separate local-
ization function for every season of data. Unfortunately, this
approach is often not practical when computing short-term call
density estimates. There are simply not enough call samples
collected over enough ranges in the course of a week to derive
a weekly updated localization function.

Another approach, recommended here, is to build a
localization function out of the full seasonal dataset, but use
SLNR (and thus noise) as a covariate. Calls detected over a
short time window can then be sorted by SLNR, and mea-
sured call densities for each SLNR value can then be calcu-
lated and adjusted by the appropriate SLNR masking factor
P,. In this manner, an accurate, short-term time series can
be reconstructed. This particular approach only works if
calls with different SLNR are statistically independent; e.g.,
no call sequences with alternating high- and low-source lev-
els are generated.

Marques and Buckland (2004) discuss additional situa-
tions where covariates like SLNR need to be considered
explicitly in distance sampling density estimation.

VI. CONCLUSION

Bowhead whales respond to differing ambient noise
conditions by increasing their rate of calling and increasing
their call source level (Lombard effect). Here we show that
call density increases with increasing in-band continuous,
natural ambient noise and in the presence of weak seismic
survey activity. The effect of weak seismic survey activity is
roughly similar to a 10-15dB change in continuous noise
levels. At higher exposures to seismic activity noise, indi-
vidual call rates become suppressed, and the measured call
density decreases. As the 10-min exposure reaches 115dB
re 1 ,uPaZ—s cSEL, call density returns to baseline (no airgun)
levels, and densities are further suppressed at higher levels.

Distance sampling, using the SLNR as a covariate, was
successfully applied to address masking effects. This tech-
nique may be viable to other situations where one can
assume a uniform or other a priori animal distribution in
azimuthally symmetric propagation conditions. Both the
raw and unmasked behavioral response distributions show
that calling bowhead whales display a strong Lombard
effect by increasing their call source levels in the presence
of in-band, continuous noise, producing a nearly 20dB
change in mean source level between the 1st and 99th noise
percentiles. At low noise levels individual whales can adjust
their mean source level to completely compensate for ambi-
ent noise level changes, but they steadily loses their ability
to adjust as noise levels increase, until most calling individ-
uals in a population can no longer compensate for increasing
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noise levels. We postulate that this apparent reduction in or
loss of behavioral sensitivity at high noise exposure levels
arises from physiological limits to sound production and does
not necessarily represent a loss of behavioral sensitivity. By
contrast, the population’s mean call source level increases by
just a few dB when seismic survey acoustic conditions
increase noise cSEL conditions by 40 dB. This apparent insen-
sitivity may arise from the impulsive nature of this noise,
which might allow whales to communicate using their base-
line source level during the times between airgun pulses, pro-
vided that they call more frequently. Increases of
reverberation levels with increasing ¢cSEL may explain why a
weak source level response does exist to seismic airgun noise.

These results illustrate the importance of using behav-
ioral responses to natural noise fluctuations to place anthro-
pogenic responses in context, and may provide insight into
how to translate call density estimates into animal densities.
The modified distance sampling technique derived here may
also have applications in correcting measured call density
estimates collected over relatively short timescales.

Both humans and animals display other responses to
ambient noise shifts, including changes in the temporal and
spectral structure of signals (Brumm and Zollinger, 2011).
For example, Parks et al. (2012) has identified shifts in call
minimum frequency in right whale calls in response to
increasing low frequency noise. This dataset is ripe for fur-
ther such investigations, including incorporating long-term
changes in call spectral structure into the analysis (e.g.,
Thode et al., 2017).
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APPENDIX: DISTANCE SAMPLING AVAILABILITY
FUNCTIONS FOR DISTRIBUTED PAM ARRAYS

The distance sampling Eqs. (1)—(4) are derived assum-
ing that the distance of a detected object can be determined
using measurements from a single point. Thus, the standard
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form of the availability function, n(r), is a circle normalized
by the total monitoring area A: 2mr/A (Marques et al.,
2013b; Buckland et al., 2012). However, most methods for
localizing underwater sounds require detecting the same
signal on multiple sensors, using either relative arrival time
differences on hydrophones or triangulation on directional
sensors to achieve the localization. As a result, a given
localization yields multiple ranges to different sensors, rais-
ing the question as to whether all ranges measured from all
sensors should be treated as independent samples when
computing the maximum-likelihood fit for the localization
function, or whether only the closest range to each position
should be used. In this appendix we demonstrate that the lat-
ter choice yields an answer that is clean and intellectually
consistent for this study, but requires a more complex avail-
ability function than a simple circle.

Two issues were found when using all ranges to a local-
ization: first, their use artificially inflates the scale parameter
in the localization function [¢ in Eq. (3)], since using all
ranges to a localization, and not just the closest, biases the
observed distribution toward larger ranges. For example, if a

(@) k
(c) !

call is detected at three DASARSs at 300, 1000, and 2000 m
range, then the mean range of the three samples (1100 m)
will be larger than using the minimum range (300m). A
more serious issue can be seen in Fig. 9, which displays the
localization function results in a format similar to that of
Fig. 3. One sees that for SLNR values below 70dB the
observed range distribution f(SLNR,r) in subplot 9(a) (top
left plot) bifurcates into a bimodal distribution, with the
most prominent peak emerging at 7km, i.e., the separation
between DASARs. Our interpretation of this result is that it
is a quirk of the triangulation algorithm that arises when an
analyst trics to estimate a bearing for a weak (low SNR)
call. The bearing uncertainty for weak calls rises substan-
tially, and when applying the maximum-likelihood robust
triangulation scheme of Lenth (1981) we observe a tendency
of the algorithm to “cluster” calls with high azimuthal
uncertainty around the closest DASAR, when then generates
a set of distances close to 7km from the other DASARs.
Numerical simulations found that this effect only occurs
when a call is generated within a range dD¢ of the closest
DASAR, where D is the sensor separation (7 km), and d¢ is

(b) !
(d l

FIG. 11. (Color enline) Ilustration of how the availability function changes for a three-sensor grid. The availability function is all points on the circles’
petimeter that do not penetrate other circles. (a) r < D/2:n(r) = 6nr, (b) D/2 <r <D/V3:n(r) = 120r, (¢) D/V/3 <r:n(r) = (60+2m)r, (d)
D/V3 < r:n(r) = 3D+ 2nr. o = sin”! (D/2R). For (d) one sees that at large ranges the availability function for the distributed array converges toward

the standard availability function of a circle.
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the azimuthal uncertainty in radians. At weak signal-to-
noise ratios (below 5dB) the uncertainty can reach up to
10°, so the clustering effect occurs for weak calls 1km or
closer to the nearest DASAR.

The number of calls affected by this situation is small
(20% of the sample), so using all ranges to construct a local-
ization function can be viable if one were simply trying to
build a general localization function without using SLNR as
a covariate, and had an ability to measure the source level of
a call (so low SLNR calls could be rejected). However,
given the desire to generate an accurate image of the behav-
ioral response p(SLINL), this 7km clustering in Fig. 9(a)
was unacceptable, and we are forced to fit a localization
curve using only the range to the closest DASAR that con-
tributed to a given localization.

However, using only the closest range to a call gener-
ates a new problem, as revealed for the resulting estimates
of f(SLNR,r) and g(SLNR,r), plotted in Figs. 10(a) and 10(c),
which show strong discontinuities in the localization func-
tion at 3.5 km for any SLNR above 68 dB, e.g., Fig. 10(c).

The reason for this artifact is that when only the range
to the closest DASAR (in a triangulating grid of DASARs)
is used, the availability function is no longer a circle, but
becomes a more complex locus of points whose structure

250
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changes with increasing range. Figure 11 illustrates this
point for a simple three-sensor triangular grid, with sensor
separation D. When calls are generated at a range r < D/2
(upper left, a), then the loci of points that satisfy this condi-
tion define three nonoverlapping circles with cumulative
perimeter of 677, and thus the perimeter function is propor-
tional to this value.

As r increases past D/2, the circles of radius r overlap,
and only points outside the perimeter of any other circle sat-
isfy the condition of r being the closest range to a DASAR.
As r grows much larger than D/2, the circles nearly
completely overlap and the perimeter converges toward the
value of a single circle with circumference 2nar, shown in
Fig. 11(d).

Thus, for a three-sensor localization grid as in Fig. 11,
the availability function 7(r) can be shown to be:

D D D
2. B 2 e .
r\2.7r(r) 6mr; 7 <! <\/§.120i7‘,
b <r:a(r) = (6a+2m)r;
VAR ’
D
— < r:a(r) = 3D + 27, (AD)
V3
7 T
3 sensor grid
—— 7 sensor grid
6l |
5l ]

Perimeter/2nmr
H
:
.

Range(km)
(b)

FIG. 12. (Color online) (a) Availability function for a three-sensor array with 7km separation (black), seven-sensor array with 7km separation (red), and
standard point transect (blue). (b) Availability function for three-sensor (black) and seven-sensor (red) distributed array, normalized by standard point tran-

sect availability function.
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where o = sin~'(D/2R). For seven sensors in a triangular
grid, which represents the actual Site 3 and 5 geometry, the
availability function becomes

D
r< 7 a(r) = ldar,

b <r< % ca(r) = (440 — 87)r,

2 V3
D< (r) = (140 + 2m)

—= <r:a(r) = (140 + 27)r,

V3

D

—<~r:n(r)="1D + 27r. (A2)

V3

Figure 12 plots the three- and seven-DASAR availabil-
ity functions vs range for D =7 km. The right subplot shows
the availability function divided by the standard distance
function 27nr and clearly reveals the availability functions’
discontinuous slope at D/2 (3.5 km) range. At larger ranges
the ratio in subplot b rapidly decreases and then asymptoti-
cally approaches 1, thus converging into the standard avail-
ability function when the range is much larger than the
dimensions of the distributed array.

The discontinuity at 3.5 km is what introduces the verti-
cal artifact visible in Figs. 10(a) and 10(c). This is an impor-
tant point because if point transect theory is applied to a
distributed tracking array with spacing D using only one
range (closest range) per localized call, then the resulting
localization function will appear to fall off sharply at a
range equal to D/2. This artifact could casily be interpreted
as a true localization function when, in reality, it arises from
using an incorrect availability function 7(r).

Equation (A2), combined with Eq. (4), yields Fig. (3).
While standard distance sampling software packages, e.g.,
the DISTANCE package (Thomas et al., 2010) developed
for the statistical software language R, do not allow the
specification of arbitrary availability functions, one can
select the range binning option and then duplicate samples
at each range according to the normalized availability func-
tion (e.g., right side of Fig. 12) to effectively apply any
availability function desired. Other approaches for modeling
nonstandard availability functions are provided in Marques
et al. (2010, 2013a) for point and linear transects,
respectively.

"Technically this term should be called “call intensity” or “call flux,” as it
describes a quantity that is a rate per unit area, but we opted for “call
density” to avoid confusion with acoustic intensity and to be consistent
with other animal density estimation literature.

*We emphasize at the outset that our definition of p(“+*) and other
upcoming quantities includes the probability of not only detection, but
also of localization, a process that requires a call to be detected on addi-
tional sensors beyond just the closest sensor (which is the origin for R,,,,).

31t is unfortunate that the distance sampling literature uses the Greek sym-
bol « for both the availability function and the famous irrational number,
but we chose to respect that [irrational] convention here by always writing

the availability function with an explicit dependence on r: 7(r).

*AL first glance, this relationship implies an effective transmission loss of
~20log;o(R), which is considerably harsher attenuation than the
15log16(R) used to model the source levels. Note, however, that Fig. 4
shows parameters from a localization, and not a true detection, function,

J. Acoust. Soc. Am. 147 (3), March 2020

and that at least two detections on at least two DASARSs are required for a
localization. A simple simulation demonstrates that if a call is equidistant
from two sensors, and if the detection probabilities at both locations are
statistically independent, then the probability of localization is equal to
the square of the probability of detection. If a signal’s detectability vs
SNR is modeled as a sigmoid, one finds that a 15log;o(R) propagation
model will generate a localization function that displays an 18 to
20log;o(R) relationship between the scale parameter and SLNR, as
shown.

’See supplementary material at https://doi.org/10.1121/10.0000935 for
contour plots of the probability distributions of call density vs in-band
ambient SPL noise level; for displays of the joint and conditional proba-
bilities for other combinations of R,,,, and analysis method; and for dis-
plays of regressions of both source level and behavioral sensitivity for
data samples collected in the absence of seismic survey noise.

©As stated in Sec. II B, the noise levels displayed here are computed from
bandwidths that vary from call to call. A regression of broadband noise
levels against these “floating bandwidth” levels found that adding 12 dB
to the noise scales shown here makes them approximately equal to the
RMS sound pressure level (SPL) measured over a fixed bandwidth of
20-170Hz.
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ABSTRACT
Seven years of passive acoustic data from the Beaufort Sea were used to estimate the
cumulative number of calls detected each season across two sites spaced 132 km apart
along the bowhead whale fall migration corridor, to determine whether both sites
generate consistent multi-year trends in call abundance (cumulative call counts). Raw
call localizations, generated using automated methods, were adjusted three ways. First,
call counts were restricted to those generated within 3.5 km of an acoustic sensor, in
order to remove noise masking effects. Second, call densities were adjusted for
population-scale behavioral effects that include diel responses, geographic latitude
variations, and responses to changes in ambient noise levels and seismic airgun survey
activity. Finally, multiple sensor malfunctions during two seasons required additional
adjustments. Both sites indicated a multiyear decrease in cumulative calls between 2008
and 2011, followed by a steady increase in cumulative call rates between 2011 and 2014.
Adjusting for behavioral effects was only significant during 2009, when the migration
was highly clumped and call densities very high. This analysis suggests that passive
acoustic monitoring can generate consistent long-term call abundance estimates at two
different sites, but it remains inconclusive whether localization restrictions and

behavioral adjustments are needed in order to do so.
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L INTRODUCTION

Challenges in passive acoustic marine mammal abundance estimation arise from
both variations in call detectability and variations in animal behavior, which can be
difficult to separate (Marques ef al. 2013). Several approaches exist for handling call
detectability. One straightforward approach is to restrict samples to those generated at
sufficiently close distances to sensors, which allows call detection rates to be interpreted

as call production rates (Blackwell ef al., 2013, 2015; Thode ef al. in review).

Adjusting raw call counts for behavioral variations is more challenging, and
requires prior estimates of “cue rates” of individual (Marques et al. 2013, Warren et al.
2017, Harris et al. 2018). The cue rate, or the mean number of calls generated per
individual per unit time, depends on a large number of factors, including behavioral state,
environmental factors such as ambient noise levels and time-of-day, and demographic
factors like sex and age (Marques ef al., 2013).  Cue rate measurements are typically
conducted using acoustic tag studies (Baumgartner et al, 2015; Simon et al. 2009;
Johnson et al., 2014), which suffer from large logistical burdens, limited sample sizes,
short observation times, and sampling biases with regards to particular demographic
groups and behavioral states. Passive acoustic data from fixed recorders can be
combined with independent data on population sizes and distribution to place bounds on
cue rates (Blackwell ef al. in prep), but passive acoustic methods alone cannot determine
cue rates or absolute abundance. They can measure call abundance (i.e. cumulative

counts of call localizations measured over a fixed time interval), which could still provide
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insight into relative long-term temporal trends and spatial distributions within a

population.

Unfortunately, even this more limited goal faces challenges similar to absolute
abundance estimation in terms of variations in call detectability (masking effects) and
behavioral state. In certain circumstances one can assume the observed population is in
the same general behavioral state (e.g. migration), or that the relative proportions of time
the population spends in different behavioral states remains steady over time. But even
with these assumptions call production rates can still vary in response to changes in
various environmental factors, including diel effects (Goold, 2000; Baumgartner and
Fratantoni, 2008; Blackwell et al. 2007), and the presence of both natural and
anthropogenic noise sources (Blackwell er al, 2015; Thode ef al, in review).
Fortunately, passive acoustic measurements can provide insight into these potential
environmental responses, without the need for additional external data, provided that the
population can be assumed to be under the same general behavioral state, and that the
demographic composition of the population doesn’t change both within and between
seasons. However, to date little work exists on how to use passive acoustics to correct
raw call abundance measurements for behavioral variations in response to environmental

factors, and whether these corrections would have a significant impact on call abundance.

Here we derive relative abundance estimates of migrating bowhead whales over
seven years, using a large acoustic dataset collected between 2008 and 2014 along the
continental shelf of the Alaskan North Slope, in order to document the westward fall

migration of bowhead whales (Blackwell er al. 2011). Our analysis is simplified by
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assuming that the population remains in a single behavioral state—migration—during the
August-September field season of each sampled year. The data are collected on clusters,
or “sites,” of special directional acoustic sensors that have the ability to both detect and
localize calls, whenever calls are produced at sufficiently close range to the site.
Previous work on this dataset has determined how to avoid masking effects using so-
called “direct census” methods, and has also derived a statistical regression model that
predicts how population-scale call production rates shift in response to two types of
acoustic noise: natural wind-driven and seismic airgun survey (Thode et al., in review).
Here we expand the statistical analysis to include year as a categorical variable, and to
incorporate diel effects, distance from the shoreline, and malfunctioning sensors. This
behavioral model then provides weighting, or “behavioral adjustment,” factors that are
applied to raw call counts in order to compensate for potential differences in these

environmental factors between sites.

We evaluate the resulting cumulative call abundances by comparing them
between two sites 132 km apart, before and after compensating for environmental factors
and call masking. We also compare the multiyear trends in call abundance between the
sites. We hypothesize that as the whale migration passes through both sites, the
cumulative call abundances and multi-year trends should be similar between the sites,

and that any compensating adjustments should improve the match further.

Section II reviews the location, equipment, and deployments used to collect the
data, the automated detection and localization methods used to obtain cumulative call

abundance, and the statistical regression and factor adjustment procedures. Section IIT
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displays examples of the predictive model and adjustment factors, before reviewing
cumulative call counts between two sites. Section IV discusses the relative importance of
call masking, environmental factor adjustment, complications arising from defective
sensors, and why one particular year-2009-was especially sensitive to environmental

factor adjustements.

1I. METHODS

A. Equipment and deployment configuration

Each year from 2007 through 2014, the Shell Exploration and Production
Company (SEPCO) commissioned Greeneridge Sciences, Inc., to deploy at least 35
Directional Autonomous Seafloor Acoustic Recorders (DASARs, model C) (Greene et
al., 2004), divided among five sites in the coastal Beaufort Sea. The motivation behind
the effort was to evaluate the potential impact of airgun and other industrial sounds on
bowhead whale behavior during their westward fall migration in the relatively shallow
Arctic waters off Alaska (Blackwell ef al., 2013, 2015, 2017). Over that entire period,
nearly 2.3 million bowhead whale calls were localized during the fall migrations.

DASARSs are autonomous recording packages equipped with an omnidirectional
acoustic pressure sensor (sensitivity of -149 dB re V/ 1 pPa) and two horizontal
directional sensors capable of measuring the north-south and east-west components of
acoustic particle velocity. This arrangement permits the azimuth of received sounds,
such as bowhead whale calls, to be measured from individual DASARs. Each time series

is sampled at 1 kHz with a maximum usable acoustic frequency of 450 Hz due to
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antialiasing filter roll-off. Coincident bearings to calls detected on different DASARs are
combined via triangulation to yield two-dimensional call positions, from which the range
of each call to every DASAR can be estimated (Greene er al., 2004). This ability to
measure bearing from a single point allows a location to be estimated using only 2
DASARs (instead of 3-4 time-aligned nondirectional sensors). Occasionally, the
directional sensor on a DASAR malfunctions while the omnidirectional sensor keeps
working, so while the package can aid other DASARS in detecting a nearby call, it cannot
assist in localizing it. Instruments that have only a functional omnidirectional sensor will
be labeled as “ASARs” in the rest of the text, as they have an important role to play in

our analysis.

From August to October, 2008 to 2014, multiple DASARs were deployed across a
280 km swath off the Alaskan North Slope, on the continental shelf in water depths
between 20 and 53 m. The deployments were grouped into “Sites”, labeled 1-5 traveling
from west to east (Blackwell et al. 2015). In this paper we focus only on Sites 3 and 5,
which consisted of seven DASARs each, deployed in a triangular grid with 7 km
separation and labeled ‘A’ to ‘G’ from south to north (Figure 1). These sites had
identical layouts and thus presumably similar localization footprints. They were also
sufficiently distant from each other (132km) to provide a reasonable basis for
independent comparison. Cumulative call abundance at sites 3 and 5 were computed
between 24 August and 28 September of each season, as those dates were the ones during

which both sites were operational across all seasons.
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Figure 1: Location and configuration of DASAR sensors. Cumulative call abundance was computed at
Sites 3 and 5. Details of the latter site are shown in subplot (¢), along with the naming convention for
individual DASARS at a site.

Bowhead whale calls in the raw acoustic data were post-processed two ways: by
a team of human analysts, and by a six-stage automated detection and localization
program. Both approaches have been extensively described and evaluated in other
publications (Thode et al., 2012, 2016, 2017), but only the automated analysis is used
here, because it was the only approach that processed all deployment days and thus
permitted cumulative counts for an entire season. Each detected call event on every
DASAR was assigned a start time, duration, frequency bandwidth, and range. Call events
matched between DASARs yielded both a 2-D location estimate and positional
uncertainty. Malfunctioning DASARs that could not localize (“ASARs”) could still
participate in matching calls between two fully functioning DASARs, by using the
omnidirectional sensor. Allowing this participation allowed more robust linkages
between distant DASARs for improved localization. During a few deployments multiple

DASARs failed at a single site, with the worst situation arising in 2013, when DASARs
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A, B, and E lost directional ability at Site 3, and DASARs C, D, and E lost directional
ability at Site 5 (Table I). The potential seriousness of this situation prompted the
inclusion of a DASAR ‘state’ in the statistical regression model described below. We
also explored the effect of removing call localizations associated with ASARs before

fitting the statistical model.

Table I: List of DASARS with localization or complete malfunctions. Regular text:
ASAR deployment. Bold Italic: Complete malfunction or DASAR loss.

Year Site 3 Site 5

2008 E

2009 G

2010 A, F F

2011 B, G

2012

2013 A B E C,D,E

2014 F
"DASAR not deployed

B. Removing masking effects

As discussed in the Introduction, both masking and behavioral response effects
may bias call abundance estimates. In order to remove masking as a factor, two

approaches were examined.

The first approach was to only incorporate a particular call into a call abundance
count if it occurred less than a distance R, from the closest DASAR at a site. Previous
work (Thode et al., in review) found that when R, is set to 3.5 km (half the distance

between adjacent DASARS), over 80% of the calls generated had a >99% probability of
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being localized by the system. These results were derived from calls whose frequency
range was restricted to between 20 and 170 Hz, in order to permit the assumption that
whale calls had no directivity, and the same restriction was applied here. By restricting
call localizations to those less than 3.5 km from the nearest DASAR (and between 20 and
170 Hz), one could assume that the call detection rate was equal to the underlying call

production rate in that region, removing any masking effect.

The second approach was to simply include background noise estimates into the
subsequent statistical model, with the expectation that noise masking effects would be
automatically incorporated into the behavioral adjustment factors. To that end R, was
set to 500 km for certain analysis scenarios, an artificially large value that effectively

permitted all call samples into the model, regardless of location.

C. Statistical regression models for call density

In order to derive correction factors that adjust for behavioral responses to
environmental factors, we extended the regression analysis in Thode ef al. (2017, in
review) to determine how six potential prediction variables affected observed call
density, once masking effects were removed. We constructed four different scenarios
that differed in the number of predictor variables used, how call masking effects were
treated, and how ASAR data were handled. Sites 3 and 5 were fitted with separate and

independent regression models, regardless of scenario.

For all models and all scenarios the dependent variable — CallDensity- was
computed for every DASAR at both sites. It is defined here as the number of calls

detected over a 10-minute window within a range R,... of a particular DASAR. Each
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localized call is assigned a call density, computed using a ten-minute window centered on
the detection time of that call. As discussed above, the frequency range of calls was

restricted between 20 and 170 Hz.

The complete set of environmental factors, or predictor variables, associated with

each call was defined as follows:

TimeOfDay: Diel effects have been observed in numerous mysticete and
odontocete species, including bowheads (Blackwell er al, 2007; Goold, 2000;
Baumgartner and Fratantoni, 2008), so a categorical variable was defined that is ‘0’ for
calls generated at night and ‘1’ for calls generated during daylight. Daylight is defined as
any time that lies between local sunrise and sunset. A preliminary analysis of the
potential impact of dawn or dusk on call rate (defined as anytime within one hour of
sunrise or sunset, respectively), found no effect, so the final values assigned were either
‘Oor ‘1.

DistanceFromShore: This factor accounts for potential differences in animal
abundance with distance from shore, such as a density gradient. The value assigned to
this continuous variable was simply ‘1 if the call was generated closest to DASAR A, ‘2’
if closest to DASAR B, etc. Thus larger numerical values were associated with further

distances from shore.

Including this variable was an attempt to compensate for the fact that detections
on the northern and southern edges of the tracking array (i.e., DistanceFromShore
values 1 and 7, which correspond to DASARs A and G) may not be successfully

localized as effectively as calls generated in the middle of the array, because fewer
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DASARSs are available to contribute to a localization at the array edges. So this factor is

technically a detectability adjustment, and not a behavioral adjustment.

AmbientNoiseRMS: Noise levels associated with each call were computed by
extracting a noise sample beginning 3 s before the start of the call sample, and then
computing the root-mean-square (RMS) sound pressure level (SPL) using the same time
duration and bandwidth as the call. A 3 s time shift was chosen because most bowhead
whale calls are shorter than 2 s, and an extra buffer second was added to reduce the
possibility that any signal energy might contaminate the noise sample. The noise samples

used here are thus identical to those used in (Thode ez al., in review).

AirgunCSEL: Seismic airgun activity was detected using the same automated
algorithm described in detail by Thode et al. (2012), and modified by Thode ef al. (in
review). Seismic activity was designated as “present” for a given call on any DASAR if
at least one airgun pulse was detected on DASAR G at the same site within 5 min of the
detected call. The motivation for using DASAR G data was that it was at or near the
deepest location at each site, and thus detected many more airgun pulses than sensors in
shallower water. Using detection criteria from a deep location thus acted as a safeguard
against missing pulse detections on shallower DASARs. If airgun pulses were associated
with a call, then the cumulative sound exposure level (¢SEL; dB re 1 pPa"2-s) was
calculated over the 10-minute window centered around the call, the same metric used by
Blackwell ef al. (2015). However, that previous study measured cSEL over fixed non-
overlapping 10-minute intervals, while here the cSEL associated with each call was

integrated over all airgun pulses detected within 5 min of a given call. Thus each call
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detected was assigned a unique cSEL value, as well as a binary designation of ‘present’
or ‘absent’. During the analysis it was found that during 2009 precisely-timed sequences
of bowhead calls occasionally falsely triggered the airgun detector, so the detector output
was manually reviewed and corrected for all years.

DASARstatus: The fact that multiple DASARs lost their directional capability
across the seasons raised concerns as to whether the resulting “ASARs” would
experience altered call densities in their vicinity, since the existence of these positions
would arise from triangulation from more distant sensors. To this end some scenarios
defined a categorical variable where ‘0’ designates an ASAR and ‘1’ a fully functional
DASAR. In other scenarios, calls associated with ASARs were removed altogether and
the model did not use this variable. The disadvantage of this latter approach is that it

eliminates large numbers of calls during 2013.

Year: Finally, in recognition that some of the factors above may vary by year
(e.g. DistanceFromShore), in most scenarios the year the call was detected was included
as a categorical variable, with ‘0’ corresponding to 2008, etc. One scenario pooled data

across all years, thus eliminating Year as a factor.

The behavioral adjustment model consisted of two generalized linear models
(GLM) per site, which were derived by regressing the logarithm of call density against
various combinations of the six factors listed above, assuming a log-normal distribution
for call rate. (A log-normal GLM yielded residuals that better fit a normal distribution
than those from a Poisson regression on call rate). The two GLMs per site were fitted

from call samples that were produced in the presence or absence of seismic airgun
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activity, respectively. For the submodel where seismic airgun activity was absent,
AirgunCSEL was removed as a predictor variable. The Bayes Information Criterion
(BIC) was used to build a stepwise regression model from a constant value, allowing up
to third order terms and cross-terms between the factors. Thus for each scenario listed
below four GLM models were fit to cover every combination of site and airgun

presence/absence.

D. Call correction weights

Compensating for environmental influences on calling behavior involved defining
a “reference” environment that contained fixed values for up to five environmental
factors (excluding Year). The underlying logic of the following steps is that if a call is
detected under conditions associated with call densities lower than those measured during
reference conditions, then had the environmental conditions actually been at “reference”
conditions one would expect additional calls to have been generated (due to the animals’
shift in calling behavior), and thus measured call density estimates from that time should
be revised upwards. Similarly, if calls are detected under conditions associated with
higher call densities than those generated under reference conditions, then call density
estimates from that time should be revised downwards. It’s important to re-emphasize
that this adjustment strategy is a separate issue from correcting call detectability: it
provides an adjustment for behavioral variations produced in response to changes in
environmental conditions (although the DistanceFromShore may also incorporate

detectability variations as well).
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Call correction factors, or weights, are generated from predictions from the GLM
models. Each GLM uses the environmental factors co-measured with each detected call
to predict the “expected” call density from the GLM, using those specific factor values as
inputs. Applying the reference values for these same factors as inputs to same GLM
produces a “reference” density that remains constant for every call sample localized
during a given year. The ratio of the reference to the expected call density is defined as
the “call correction weight” for that call, and quantifies how heavily a given call will
contribute to the final cumulative call abundance. Specifically, if d(F, ¥) represents the
expected call density predicted by a particular GLM derived during Year Y using

environmental factors £, then the call correction weight w for a specific call is defined as
w(E,Y) = d(FrizeaY )/d (Faps Y ) 1)

where [j..q represents the reference values of the environmental factors, and Fop
represents the environmental factors actually observed with the call'. If no
environmental factors are adjusted to their reference values, so that Fyq = Fops, then the
weights will have a value of 1, since the expected and reference call densities are equal.
A raw cumulative call abundance estimate effectively assigns each detected call a weight
of one (so that the cumulative call abundance is simply the sum of all calls measured
across the seasons), while an adjusted call abundance sums over the call correction

weights, so that calls generated during conditions associated with low call densities (call

1 One might be tempted to define w(F,Y) = d | Ffiyeq,2008)/d ( F,,, Y ) in order to compensate for
g p fixed obs p

shifts in behavioral responses between years as well as within a single season. Unfortunately this

approach also eliminates any long-term changes in call density arising from increased abundance.
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densities below the reference call density) result in larger correction weights, and thus

have higher contributions to the final call abundance.

To determine the relative impact a particular environmental factor has on the
adjusted cumulative call abundance, one can evaluate the correction weights that arise
from assigning the reference value to only that factor in the GLM, while retaining the

values of the other factors actually measured with the call.

The net impact of these correction factors depends on how the migration is
distributed over time. If environmental conditions fluctuate randomly throughout a
migration characterized by a steady progression of whales, then the net effect of the
corrections on the cumulative call abundance estimate may be small, since an increase in
adjusted call density at one time can be offset by an adjusted call density decrease at
another time. By contrast, if the migration is heavily concentrated or clustered over
specific time intervals within the season, then the environmental conditions present
during these periods can have a disproportionate impact on the cumulative estimate.

These considerations become important when interpreting the results below.

In principle, if the behavioral model of the population does not vary across years
(e.g. the population’s cumulative response to changes in ambient noise levels does not
depend on Year), then the exact values used for the reference environment should be
irrelevant for determining the relative cumulative abundances, as long as the correction
factors are applied consistently across sites and seasons. The values used in the scenarios
below were ‘1’(daytime) for TimeOfDay, 3 (DASAR C) for DistanceFromShore, 85

dB re 1 uPa (SPL, 20-170 Hz)) for AmbientNoiseRMS, 115 dB re 1 pPa’s for
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AirgunCSEL, and ‘1’ for DASARstatus (when applicable to a scenario). The reference
value for AmbientNoiseRMS was the median value of the multi-year noise distribution,
while the AirgunCSEL value was selected to be the value at which the GLM predicts
call densities with the same values as those when airguns are absent. (At lower airgun
exposure values call densities are higher than when airguns are absent). As mentioned in
the previous subsection, GLM models were fit for circumstances when airgun signals
were present or absent, and the reference value for AirgunCSEL was only applied to the
GLM model derived from calls generated when airgun signals were present. Alternate
reference values were also analyzed to test whether behavioral models derived during

different seasons were similar.

E. Final scenarios

Four particular scenarios captured the essential features of all the possible

analysis combinations discussed above:

NoLocLimit: Here no adjustments or localization restrictions (Rye: = 500 km)
were made on calls when computing cumulative call abundance. Calls associated with

ASARs were not removed. Year was incorporated as a categorical variable.

LocAdj: Calls were restricted to 3.5 km range from the nearest sensor. Calls
associated with ASARs were retained, so DASARstatus was included as a predictor
variable. Year is incorporated as a categorical variable. This scenario incorporated the
largest number of predictor variables and most stringent localization restrictions, and thus
examined to what degree, if any, call localization improves consistency of call abundance

estimates between sites.
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LocRemove: Same as previous scenario, but calls associated with ASARs are

removed, and DASARSstatus is not included as a predictor variable.

LocPooled: Same as LocAdj, but Year is not incorporated as a variable in the

predictive GLM (and thus data are pooled across years).

As a reminder, for every scenario each site was independently fitted with two
separate submodels, one for when airgun activity was present, and one for when it was

absent.

F. Maetrics for comparing call abundance between sites

Once the raw and adjusted cumulative call abundances N; and N5 were computed
for sites 3 and 5 for each year under each scenario above, two metrics were defined to
compare the degree of similarity shared by both multi-year time series. The first metric is
simply the Pearson’s correlation coefficient R, computed from the seven-sample time
series from each site. The closer the coefficient is to 1, the more correlated the multiyear
time series. The second metric, the “mean percentage spread” (MPS), is a normalized
measure of the difference between the cumulative abundances, averaged across all years,

and is defined as follows:

IN3=Ns|

MPS =100 * TRTRYE

)
where the average is across all seasons.
While the use of different reference values for the environment will change the

absolute values of N; and Ns, both metrics R and MPS should remain the same regardless
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of the reference environment chosen, if the behavioral model of the population remains

consistent across years.

1. RESULTS

A. Statistical regressions of call density

Figures 2 and 3 shows examples of the slices of the GLM prediction surface of
the LocAdj scenario, which incorporates the full set of predictor variables. Figure 2
displays slices from the 2013 model, for times when airgun activity is absent, and Fig. 3
displays slices from the same year, but for times when airgun activity is present (and thus
AirgunCSEL is included as an additional predictor variable). The 2013 season was
chosen as an example because several DASARs lost directional capability that season,
and so the DASARstatus factor was relevant for that year. Both Figures also show how
the predicted mean call density varies with Year, when all other environmental factors

are fixed at reference values.

Although most variables were accepted into the model using a BIC criterion, the
effect size of some factors is small. For example, the categorical variable TimeOfDay
generally has a small effect, as is the case here when DASAR C is fixed as the reference
DistanceFromShore value. The effect size of this diel factor varies as a function of
DistanceFromShore, Site, and Year. By contrast, the AmbientNoiseRMS factor is
always significant, and follows a pattern previously reported by Thode ef al. (in review),
where increasing wind-driven noise levels are associated with higher calling densities.

It’s worth noting that in the NoLocLimit scenario, where no restrictions are made on a
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call’s range to a sensor, the resulting prediction model shows a decrease in call density
with increasing noise levels, revealing how noise masking effects counteract the

populations’ behavioral response.
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Figure 2: Slices of prediction surface of GLM model for LocAdj scenario, for situations when no airgun
activity is present. The top row plots Site 3 predictions; the bottom row plots Site 5. Vertical blue lines
indicate values that are held fixed when computing other plot slices. For example, for the first four
subplots the reference DASAR is set to *C” (i.e., DistanceFromShore is fixed at 3). Regressions are
shown for Year 5 (2013), except for the Year subplot.

A significant nonlinear relationship exists between call density and DistanceFromShore
that is strongly site- and year-dependent. DASARstatus reveals that ASARs have a
much bigger impact on Site 3 than Site 5, with call densities actually being predicted to
have higher values near ASARs, despite their inability to contribute to the call
localization. This result is counterintuitive, but was consistent across all scenarios and

models.

89



GREeeNeRIDGe
SCIeNCes

Evaluation of DECAF Methods Using DASARs

21

Rate

o
e 100 100 110 120 130 o 1 [ 1 N 2 ¢ 6
AmblentNolseRMS AirgunCSEL DASARstatus TimeOfDay Year DistanceFromshore

Rate

Py L
0 a0 s 10 100 110 120 130
irgunCSt

LB
AmbientNoiseRIAS TimeOfDay

Figure 3: Same as previous, except regression is applied to 2013 data where airgun activity is present,
allowing another predictor variable (AirgunCSEL) to be incorporated. Neither DASARstatus or
DistanceFromShore were found to be significant predictors for Site 5.

Figure 3 also displays predictions that are partially consistent with previous
analyses (Blackwell et al., 2015; Thode et al., in review), in that increasing cSEL levels
are generally associated with decreasing call densities (although high call densities were
correlated with high exposure levels at Site 5 in 2013). The correlation between call
density and other factors during seismic activity in Fig. 3 is generally similar to that when
airguns are absent (Fig. 2), although the final Site 5 airgun-present model does not
incorporate DASARstatus or DistanceFromShore as significant factors at all.

Figures 2 and 3 also show how Year impacts mean predicted call density when
other factors are fixed to their reference values. The choice of year has little effect on
mean call density, with the prominent exception of 2009 (Year 1), where the predicted

mean densities at Sites 5 and 3 are roughly three to five times that of the other years,
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respectively. The unusually high call densities predicted by the 2009 GLM model had
repercussions throughout the subsequent analyses.

Figure 4 shows the resulting prediction curves under the LocPooled scenario
when airguns are present, where data have been pooled regardless of the particular year.
The no-airgun model associated with LocPooled (not shown) shows nearly identical

predictions as Fig. 4.
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Figure 4: Prediction slices when data are pooled across all seasons under the LocPooled scenario, in the
presence of sound from airgun pulses.

B. Call correction weight examples

The next three figures illustrate three examples of call correction weights from the
LocAdj scenario, plotted at the dates and times when call samples were detected at Site 3

during airgun activity. By systematically fixing different factors, one gains insight into
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the relative impact of the factor on the adjusted call abundance. For example, Fig. 5
illustrates how the weights shift when a single factor, TimeOfDay, is held fixed at
‘daytime’ values. If a particular call was detected during daylight conditions anyway,
then fixing the TimeOfDay factor to ‘daytime’ has no impact on the predicted call
density, and the weight factor for that call is simply one. If call rates are higher during

the nighttime, the resulting correction weights will be below one.
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Figure 5: Call correction weights for all calls at Site 3 during airgun activity for the LocAdj scenario, when
TimeOfDay is fixed at “daytime” levels.

The results indicate that the diel effect is generally weak, and during the last few

years of the study call densities were higher at night.

Figure 6 illustrates the effect of fixing AmbientNoiseRMS to 85 dB for the
LocAdj scenario with airgun sounds present. Comparing this figure with Fig. 5, one sees
that ambient noise has a more dramatic adjustment effect than the relatively minor
changes caused by diel adjustments. In particular, one finds that during 2009 individual
calls are commonly given correction weights approaching 3; that is, a single call is often
weighted as three calls in the adjusted cumulative count. Other years show less dramatic

correction factors.

Figure 7 shows the resulting correction weights when all factors (except Year) are
held at the “reference” values listed in Section I1.C during the LocAdj scenario. These
are the actual correction factors used to estimate the cumulative abundance in the
following section. In this situation every call undergoes some adjustment, but once again

one sees very high correction weights assigned to calls in 2009.
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Figure 6: Call correction weights for all calls at Site 3 during airgun activity for the LocAdj scenario,
ambient noise adjustments only.
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Figure 7: Call correction weights for Site 3, airguns present, when all six factors are incorporated into the
LocAdj scenario. Note large correction factors for 2009.
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C. Raw and adjusted cumulative call abundance

1. NoLocLimit scenario
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Figure 8: Time series of cumulative raw call abundance, in thousands for NeLocLimit scenario, with red
points indicating Site 5, and black points Site 3. The bold labels next to the curves give the percent spread
between the sites for each year. Top: raw cumulative call abundance. Bottom: adjusted call abundance
after applying call correction weights.
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Figure 8 shows the raw and adjusted cumulative call abundance (in thousands of
counts) measured at both Sites 3 and 5 over seven years, for the NoLocLimit scenario.
Table II shows the corresponding metrics between the sites when various factors are
adjusted. The MPS decreases from 42 to 30 percent when the cumulative abundance is
adjusted, with AmbientNoiseRMS being the factor with the greatest individual
contribution to the reduction. Figure 8 suggests that the improvement in MPS arises
primarily from changes in 2009, where the percentage spread falls from 74 to 15 percent.
In contrast with the improvements in the MPS, the correlation coefficient between sites
changes very little after factor adjustments, and the 95% confidence intervals include a

value of zero, or no correlation, as a possibility.

Table II: Metrics of cumulative call abundance consistency between Sites 3 and 5 for
NoLocLimit scenario. Each row shows the effect of adjusting for a single predictive
factor. “All” indicates the effect of adjusting all factors. MPS=Mean percentage spread
between sites [Eq. (1)]. R=Pearson’s correlation coefficient. [Brackets are 95%
confidence intervals].

MPS (2013 R[CI]
Term MPS R [CI] excluded) | (2013 excluded)
0.56 0.84
No Adjustment 42 | [-0.34/0.92] 34 [0.09/0.98]
0.52 0.97
All 30 | [-0.38/0.92] 20 [0.74/1.0]
0.57 0.88
AmbientNoiseRMS 33| [-0.32/0.93] 23 [0.25/0.99]
0.53 0.86
AirgunCSEL 41| [-0.37/0.92] 33 [0.14/0.98]
0.59 0.87
DASARSstatus 41| [-0.29/0.93] 33 [0.21/0.99]
0.62 0.87
TimeOfDay 39 | [-0.240.94] 32 [0.21/0.99]
0.59 0.89
DistanceFromShore 39| [-0.29/0.93] 30 [0.27/0.99]
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Site 3 exhibits an unusually high cumulative abundance in 2013, a situation that
also occurred at all other sites except Site 5 that year (Blackwell et al., in prep). High call
counts were also obtained in another study, a DASAR deployed over the same years
northeast of Northstar, an oil production island west of Prudhoe Bay, in a location near
the southern edge of the bowhead migration corridor (Kim e al. 2014). Additionally, an
annual aerial survey in the Beaufort Sea sighted very high numbers of bowhead whales
(Clarke et al. 2014). Table II thus includes recomputed metrics, where 2013 is excluded
as an outlier, an action that leads to significant improvements in both MPS and R after
factor adjustments. With this exclusion the behavioral factor adjustments still improve

the metrics, with AmbientNoiseRMS being the dominant single factor.
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2. LocAdj scenario
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Figure 9: Time series of cumulative call abundance for LocAdj scenario, using format identical with Fig. 8.
Call counts are limited to those generated within 3.5 km of a DASAR at a given site. Top row: raw call
abundance. Bottom: adjusted call abundance, using the correction weights shown in Fig. 7.
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Figure 9 displays the results of the LocAdj scenario, which only differs from the previous
scenario by enforcing a localization limit of 3.5 km range from the nearest sensor,
causing cumulative abundance values to drop by an order of magnitude. Table III lists the
associated performances metrics, including those excluding 2013. As with the
NoLocLimit scenario, incorporating call correction weights improves the two metrics,
with the year 2009 remaining the primary reason behind the improvements. Unlike the
NoLocLimit scenario, the LocAdj scenario also demonstrates substantial improvements
in R when correction weights are applied, even when the outlier year 2013 is retained.
The confidence intervals, however, still include O if all years are included.

The next two scenarios examine perturbations of this scenario, which will be the
baseline scenario in the Discussion.
Table III: Metric evaluations of consistency of cumulative call counts between Sites 3

and 5, for the LocAdj scenario. MPS=Mean percentage spread between sites [Eq. (1)].
R=Pearson’s correlation coefficient.

R/[CT]

MPS (2013 (2013

Term MPS R/[Cl] excluded) excluded)
0.19 0.81
No Adjustment 51| [-0.65/0.83] 41 [0-0.98]
0.46 0.99
All 34 | [-0.45/0.90] 27 | [0.95-1.00]
0.24 0.85
AmbientNoiseRMS 45 | [-0.63/0.84] 34 [0.13-0.98]
0.15 0.77
AirgunCSEL 53 | [-0.68/0.81] 43 [-0.12/0.97]
0.39 0.82
DASARstatus 48 | [-0.52/0.88] 41 [0.02/0.98]
0.19 0.85
TimeOfDay 51| [-0.66/0.82] 41 [0.11/0.98]
0.29 0.85
DistanceFromShore 49 | [-0.59/0.86] 37 [0.14/0.98]
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3. LocRemove scenario
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Figure 10: Raw and adjusted cumulative call abundance for LocRemove scenario, where calls close to

ASAR positions have been removed.
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Figure 10 shows the resulting raw and adjusted cumulative call abundances for the
LocRemove scenario, which differs from the LocAdj scenario in how ASARSs are treated.
In this scenario, calls close to ASAR positions are simply removed before applying the
statistical model. A comparison of Figs. 9 and 10 shows that the major effect of this
different treatment is to remove large numbers of calls from Site 3 in 2013, with little
difference from LocAdj in other years. Given the large number of ASARs present at both

sites in 2013 (Table I), this improvement is not surprising.

Table TV: Metric evaluations of consistency of cumulative call counts between Sites 3
and 5, for the LocRemove scenario. MPS=Mean percentage spread between sites [Eq.
(1)]. R=Pearson’s correlation coefficient.

R[CI]

MPS (2013 (2013

Term MPS R/[CI] excluded) excluded)
0.43 0.79
No Adjustment 47| [0.48/0.89] 39 | [-0.05/0.98]
0.74 0.99
All 31| [0.02/0.96] 25| [0.87/1.0]
0.45 0.84
AmbientNoiseRMS 40 | [-0.46/0.90] 32 [0.09/0.98]
0.39 0.74
AirgunCSEL 48 | [-0.52/0.88] 41| [-0.18/0.97]
0.43 0.83
TimeOfDay 46 | [-0.48/0.89] 39 [0.07/0.98]
0.66 0.85
DistanceFromShore 40 | [-0.19/0.94] 35 [0.11/0.98]

Table TV demonstrates how the reduction of calls in 2013 improves the R metric
substantially, with only mild improvement to the MPS metric, when compared with

LocAdj in Table III. The improvement from excluding 2013, while still extant, is not as
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dramatic.  Interestingly, DistanceFromShore becomes the dominant factor for

improving the correlation between sites.

4. LocPooled scenario
Finally, the LocPooled scenario examines the effect of pooling all call localization data
when deriving the call correction weights, by excluding Year as a predictor variable in
all models. The raw cumulative call abundance remains the same as the top row of Fig.
9, and Fig. 11 shows the resulting adjusted call abundance from the pooled data. Unlike
the previous scenarios, the adjustments only mildly affect the 2009 and 2013 samples, so

that the metrics in Table V show hardly any improvement over the raw call abundances.
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Figure 11: Adjusted cumulative call abundance for LocPooled scenario, where the correction weights are
derived from pooled data, regardless of year recorded. Compare with top figure in Fig. 9.
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Table V: Metric evaluations of consistency of cumulative call counts between Sites 3
and 5, for the LocPooled scenario (data pooled over years). MPS=Mean percentage
spread between sites [Eq. (1)]. R=Pearson’s correlation coefficient.

MPD R[CI]

(2013 (2013

Term MPS R[CI] excluded) excluded)
0.19 0.81
No Adjustment 51 | [-0.65/0.83] 41 [0/0.98]
0.32 0.84
All 46 | [-0.57/0.87] 36 [0.10/0.98]
0.25 0.84
AmbientNoiseRMS 46 | [-0.62/0.84] 35 [0.08/0.98]
0.22 0.83
AirgunCSEL 51 | [-0.64/0.83] 41 [0.04/0.98]
0.28 0.82
DASARstatus 50 | [-0.60/0.85] 41 [0.02/0.98]
0.22 0.82
TimeOfDay 51 | [-0.64/0.83] 42 [0.02/0.98]
0.17 0.83
DistanceFromShore 51 | [-0.67/0.82] 38 [0.05/0.98]

IV.  DISCUSSION

A. Comparison between adjustment scenarios

When comparing all four scenarios across Figs. 8-11 and between Tables 1I-V,
some general trends are visible. At first glance it appears that employing call correction
factors for environmental variations improves the comparison metrics between sites. For
example, for the LocAdj scenario the MPS falls from 51 to 34 percent, and the correlation
rises from 0.19 to 0.47 when call abundance is adjusted, and these numbers improve
further when 2013 is excluded: the MPS falls from 41 to 27 percent, and the correlation
increases from 0.81 [0-0.98 confidence interval] to 0.99 [0.95-1.00 CI]. Background

noise levels are consistently a dominant factor in improving the comparison metrics
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between sites, but multiple factor adjustments are required to reduce the confidence
intervals of the correlation. Applying call correction weights still leads to some
improvements in the comparison metrics, even if call locations are not restricted to short
ranges in order to mitigate call masking issues (NoLocLimit, Fig. 8). Indeed, localization
restrictions have relatively minor effects on the metrics.

The only situation where adjusting call counts causes little to no improvement
between sites occurs when call density data are pooled across seasons (Fig. 11). Creating
a separate statistical regression model for each season seemed crucial to improving
agreement between sites. The LocRemove scenario is much more successful than the
LocAdj approach in reducing the discrepancy between the 2013 cumulative call
abundances at Sites 3 and 5, but this may simply be a coincidence: 2013 happened to be
the year when an enormous number of whale calls were present, but also when many
DASARS lost localization capability at sites 3 and 5, so removing ASARs automatically
removed large numbers of calls.

Although these improvements in the comparison metrics appear encouraging, a
closer look at Figs. 8-11 shows that during most seasons, applying call correction weights
had little impact on the MPS. Figure 7 provides some insight into why this is the case:
calls seem roughly likely to be assigned a weight either greater than or less than one, so
that the mean value of the correction weight distribution remains close to one, and that
the sum of the weights is relatively close to the number of original samples. This
observation seems closely related to the concept of “pooling robustness” in distance
sampling theory (Buckland ef al., 2004), which states that variations in call detectability

arising from various environmental factors need not be explicitly modeled, as long as the
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calls are sampled under a variety of environmental conditions that mirror the underlying
probability distributions of these conditions. To provide one example, since sample calls
are associated with a mixture of ambient noise levels that fluctuate above and below the
reference value of 85 dB, noise effects should end up having little impact on the
cumulative call count.

Why then, is there an improvement in the MPS and correlation call metrics when
environmental corrections are incorporated? The answer is that a single year shows a
dramatic response to environmental adjustments: 2009. During that year in the LocAdj
scenario, the percentage spread between the Site 3 and 5 cumulative abundance fell from
91 to 11.5 percent, once call correction weights were applied (Fig. 9, bottom). To
understand whether the behavioral adjustments are valid, we need to examine how 2009

is unique.

B. Why is 2009 unique?

At first glance, 2013 seems to be the most unusual year on record in terms of
cumulative call counts, in that the total number of calls collected at Site 3 dwarfs that at
Site 5 and both sites in other years. Given that most of the failed DASARs occurred in
2013, one might naturally wonder whether the automated localization procedure was
breaking down. For example, could the algorithm be dividing a single call event into
multiple localizations, simply because call detections at different sensors could not be
successfully linked together? Evidence against this concern lies in the fact that high

numbers of whales were observed that year from both aerial surveys and manual analysis
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of contemporary acoustic data (Kim ef al., 2014). But while the 2013 abundance is large,
it remains relatively unaffected by the environmental adjustments.

Instead, 2009 turns out to be the key year in the analysis, in that its cumulative
abundance is very sensitive to the behavioral adjustments. The reason for this is not
immediately obvious. The distributions of the various factors, like ambient and airgun
noise, are not dramatically different between 2009 and other years. However, Figs. 2 and
3 (Year subplot) show that if all other factors are held fixed, 2009 displays much higher
predicted call densities than other years. Figure 12 provides more direct evidence of this,
by plotting the cumulative distribution functions (CDFs) of call densities assigned to the
call sampled, broken down by season. Unusually high call densities characterize the
2009 CDF. Figures 13 and 14 show the impact of this distribution on the GLM
prediction slices for 2009: the predicted call densities at Site 3 become much more
sensitive to changes in the predictive factors, especially the noise-related variables.
When airgun activity is absent (Fig. 13) TimeOfDay shows a strong diel effect towards

calls occurring during daytime hours, a reversal of the usual expectation.
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Figure 12: Cumulative distributions of call density for Site 3, when airgun activity is present. Note how
nearly 40% of the 2009 call samples are associated with densities greater than 1 call/minute within 3.5 km
range.

The results of this sensitivity can be seen in Fig. 7, which shows large call
correction weights for 2009 (values of 4 or greater), compared with those from other

years.

From where does this sensitivity to environmental factors arise? Figure 7 also
indicates that call counts in 2009 are tightly grouped in clusters, a fact that Fig. 15 shows
more clearly, by plotting the cumulative call abundance for both the raw and adjusted
densities over time. During some years (e.g. 2008, 2014) calls accumulate steadily over

time, but during other years a large chunk of the total call abundance occurs over less
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than a week, and 2009 represents an extreme case. Over a period of just 4 hours over 900

calls accumulated at Site 3: 41% of the 2200 calls detected for the total season.

TimeOfDay

2 s a4 5 s
DistanceFomshore

oYear: 1,

° o w
AmbiontNoisoRMS. Year

Tima0may

Figure 13: Slices of prediction surface of GLM model for LocAdj scenario, for 2009 (vs. 2013 in Fig. 3),
when airguns are absent. Note the difference in the vertical scale for call density, which reflects the higher
call densities present during 2009.
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Figure 14: Slices of prediction surface of GLLM model for LocAdj scenario, for 2009 (vs. 2013 in Fig. 3),
when airguns are present.

Figure 16 shows a spectrogram of calls detected during this busy time frame,
indicating that a regular sequence of calls is being repeated in the presence of seismic
airgun activity. These call sequences have been documented elsewhere (e.g., Stafford ez
al., 2012), but are not a common feature of the bowhead whale repertoire during autumn.
The year 2009 may therefore be dominated by whales in a behavioral state different than
other seasons. Complicating matters further, a storm moved over sites 3 and 5 shortly
after the times shown in Fig. 16, lasting for nearly a week and thus reducing the
cumulative abundance at both sites. Seismic airgun activity was present during most of

the season as well.
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Figure 15: Cumulative call abundance over time, for Site 3 (black) and Site 5 (red). Each row represents a
different year. The left column displays cumulative raw counts, while the right column displays the
cumulative adjusted counts.

This potentially different behavioral state of the animals is responsible for the
abnormally high call density, and the intense clustering of a substantial portion of the

total cumulative abundance over such a short time window may have amplified the
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impact of the environmental adjustments, as compared with a more typical years, where
calls are more evenly distributed over time. In the latter case, calls are recorded under a
variety of environmental conditions, and if the true animal density is uncorrelated with
these factors, then the variations in call density caused by these fluctuations will average
out. This is why summing over the call correction weights in Fig. 7 yields a cumulative
abundance close to the raw call count, and why most years are relatively unaffected by

the environmental adjustments.
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Figure 16: Call sequence made by an individual bowhead whale during Sept. 13, 18:58 local time, on
DASAR D at site 3, during a time of high call density. The broadband pulses at 18, 32, and 50 sec are
airgun pulses.

However, if calls arrive in dense clusters over short time intervals, and if these
clusters arrive during conditions substantially different than the seasonally-averaged

reference conditions, then the call correction weights can be substantial, and the adjusted

112



GREeeNeRIDGe
SCIeNCes

Evaluation of DECAF Methods Using DASARs

44

cumulative call abundance can display large shifts from the raw call abundance. That is
what seemed to happen in 2009: the bulk of the call sequences took place over times
when airgun activity was present, but at relatively low (105-110 dB) exposures. As a
result, the predicted call density at low cSEL levels became very high (Fig. 14). Calls
generated outside the call sequences happened to be detected when airgun activity
exposures were higher (115 dB), resulting in very high correction factors and thus large
behavioral adjustments. Similar effects happened for other factors: when a call occurred
outside the call sequence it tended to be assigned a large correction weight, because the
environmental factors associated with that call were typically different than those
measured during the call sequence. Since the call density associated with the call
sequence was high, the resulting correction weights became very high. Interestingly,
although 2011 also displays evidence of sounds arriving in clusters, the statistical model
makes no substantial adjustments to the call abundance.

The improvements in the site comparison metrics shown in Tables II-V thereby
hinge on large call adjustments during a single year, which in turn seem to arise at least
partially from an unusual set of behavioral circumstances that took place over only a few
hours during 2009. The improvement in the metrics may simply be a statistical fluke; for
example, the adjusted cumulative call abundances for 2009 in Fig. 15 (second row, right
column) always show more accumulated calls at site 3 instead of site 5, even though one
would expect a western migration to cause the easternmost site 5 to lead in the
cumulative call count. There exist multiple years, however, where both the raw and
adjusted call counts at site 3 lead site 5. The fact that the adjusted cumulative

abundances between the sites match so well, despite being fit with completely
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independent models, remains intriguing. Unfortunately, the small number of site/year
data points preclude definite conclusions about the efficacy of adjusting call abundance

for behavioral adjustments.

C. Multi Year trends in adjusted call abundance

If we tentatively allow that the adjusted call abundances shown for the LocAdj or
LocRemove scenarios are valid, then both sites showed a consistent multiyear trend in the
call abundance (Fig. 9, bottom). After a steady decline in abundance from 2008 through
a nadir in 2011, (when the call abundance of 2,500 was a quarter of the 10,000 call
abundance count of 2008), call abundances then increased steadily during the last three
years of the study. A 74% decrease over four years is then followed by a 300% increase
over three years, until the adjusted cumulative call abundance in 2014 has returned to
nearly the same value (~10,000) as in 2008, the start of the study. Even the raw call
abundance estimates show a consistent increase in abundance after 2011.

These are dramatic changes, and multiple potential explanations exist beyond
simple changes in actual animal abundance within the range of our acoustic recorders.
The migration corridor is known to shift from year to year, the behavioral responses of
whales to environmental factors may be changing with time, or the timing of the
migration onset may have shifted. Other work by Blackwell et al. (2014) has shown that
the migration continues into October and early November, so that DASAR deployments
only cover a fraction of the total migration duration. Were the timing of the migration to

advance or retreat by a few weeks, the cumulative call abundance could change
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substantially, even if the population levels remain steady. It would be interesting to

collect further data from this area in upcoming years, for longer periods of time.

V. CONCLUSION

Cumulative call abundances of bowhead whale calls are computed and compared
between two sites over seven years, to test the hypothesis that the relative abundance
between sites and across seasons should be similar. Two adjustments to the raw call
counts are tested: (1) restricting permissible call ranges to reduce masking effects, and (2)
using a statistical model to compensate counts for variations in animal behavior in
response to diel effects, distance from shore, and two kinds of ambient noise. The
analysis was complicated by multiple failures of acoustic instruments in 2013, which led
to that year being treated as an outlier.

Even without these adjustments the correlation between sites was substantial (if
2013 was treated as an outlier). Applying the adjustments further increased the match
between the long-term trends at both sites (e.g. Figs. 9 and 10, bottom plots), which show
call abundance falling by a factor of 3.5 between 2008 and 2011, and then nearly
returning to the original levels by 2014.  Shifts in the migration corridor and timing,
along with potential changes in acoustic behavioral state, are all possible explanations for
this multi-year shift in call abundance, as well as population size changes.

The effect of the environmental compensations fell disproportionately on one
year, 2009. A close examination of that year showed that a significant fraction of the

cumulative call count occurred over less than a day, due to a small group of whales
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exhibiting an usual behavioral state that consisted of long stretches of call sequences.
This situation, along with a long stretch of time where ambient noise levels reached very
high levels, resulted in acoustic activity being very clustered and patchy in 2009. This
uneven distribution of calls over time then amplified the call correction weights for calls
generated outside those call sequences.

Unfortunately, the question as to whether these behavioral corrections truly
improved relative call abundance estimates remains inconclusive, due to the heavy
emphasis on a single year that may be a statistical fluke. Despite this uncertainty, it is
clear that the cumulative call abundances at Sites 3 and 5 are highly correlated for six out
of the seven years of the study, and that this correlation is visible even without the

improvements provided by call masking and behavioral response corrections.
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ABSTRACT:

Eight years of passive acoustic data (2007-2014) from the Beaufort Sea were used to estimate the mean cue rate
(calling rate) of individual bowhead whales (Balaena mysticetus) during their fall migration along the North Slope
of Alaska. Calls detected on directional acoustic recorders (DASARs) were triangulated to provide estimates of
locations at times of call production, which were then translated into call densities (calls/h/kmz). Various
assumptions were used to convert call density into animal cue rates, including the time for whales to cross the arrays
of acoustic recorders, the population size, the fraction of the migration corridor missed by the localizing array
system, and the fraction of the seasonal migration missed because recorders were retrieved before the end of the
migration. Taking these uncertainties into account in various combinations yielded up to 351 cue rate estimates,

which summarize to a median of 1.3 calls/whale/h and an interquartile range of 0.5-5.4 calls/whale/h.
© 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005043
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[Editor: Klaus Lucke]

I. INTRODUCTION
A. Motivation and general concept

In passive acoustic monitoring (PAM), an acoustic cue
is an identifiable sound made by an animal of interest. When
studying marine mammals, examples of cues include tonal
calls, echolocation clicks, and pulsed calls such as feeding
buzzes. In their most simple PAM use, these cues indicate
the presence of animals within the detection range of a
recorder. The cue rate expresses the mean number of cues
produced per animal per unit time, for example, the average
number of whistles produced by a dolphin per hour. If one
of the goals of a PAM project is the estimation of animal
densities via a cue-based method, then knowledge of cue
rates is indispensable (Marques et al., 2013; Warren et al.,
2017; Harris et al., 2018). The lack of reliable knowledge
on acoustic behavior and relevant cue rates for many species
is a factor that prevents broader use of passive acoustic den-
sity estimation.
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A seemingly straightforward way to obtain cue rates is
by the use of acoustic tags that are attached to individual
animals for periods of up to a few days. After retrieval of a
tag and processing of the acoustic information it contains,
cue rates can be calculated for the various types of sounds
produced by the individual who carried the tag. With
enough deployments on animals of different sex and age
classes and during different behavioral states, population-
level variable cue rates should be obtainable.

In practice, obtaining cue rates from tags is not easy.
Tag deployments require substantial logistical effort,
expense, and expertise, so obtaining a sufficient sample size
of tagged whales is challenging. Records also need to be
long enough to be representative of the normal behavior of
the whale, after the initial effects of the tagging operations
have subsided (e.g., Warren er al., 2020). Fortunately, due
to rapid advances in tag retention, deployments lasting sev-
eral days are now possible (e.g., Calambokidis et al., 2019).
Another issue is that only the cues produced by the tagged
individual should be included in the cue-rate calculation.
Depending on the types of sounds produced and the species
studied, differentiating sounds made by the tagged animal
from those by other nearby untagged individuals can be
challenging (Johnson, 2014; Goldbogen er al., 2014).

0001-4966/2021/149(5)/3611/15/$30.00  © 2021 Acoustical Society of America 3611
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Finally, assumptions must be made about how representa-
tive the acoustic behavior of a particular tagged individual is
compared to the overall population’s acoustic behavior.
Bowhead whales (Balaena mysticetus) have been tagged
with acoustic tags in only a few studies, and not enough to
provide information on cue rates. In Simon et al. (2009), for
example, the deployments were of short duration (<3h),
and no vocalizations were detected from the tagged whales.

Here, we propose a different approach for estimating
cue rates in the Bering-Chukchi-Beaufort (BCB) population
of bowhead whales during their westward fall migration.
The general principle is simple: imagine a population of
known size N, that summers in a well-defined location,
such as a bay. In autumn, the population migrates out of the
bay, and in doing so it passes over an array of seafloor
recorders. Assume that it takes the average whale T4y
hours to swim across that array and that every whale call
produced within the array is detected and counted. The
mean cue rate (CR) of this population, in calls per whale per
hour for the types of calls produced at that particular time of
the year, is calculated as follows:

Nealts

CR = —eals
N, pop ‘Ta/‘my

()

where N, is the total number of detected calls within the
array.

In actuality, the procedure described in this paper for
estimating BCB bowhead whale cue rates is not as straight-
forward as the hypothetical example above. First, the sum-
mering area of the BCB population is not a bay but a
borderless area of the Beaufort Sea. Second, we rely on
localized whale calls obtained with five arrays of recorders
in an area that only covers a fraction (f,,, 4, Of the geo-
graphical width of the migration corridor. Furthermore, the
hydrophone arrays capture only a fraction (f,;grarion) Of the
entire migration season, in part because not all whales
migrate at the same time. As a result, these two additional
factors need to be added to Eq. (1) to account for this incom-
plete spatial and temporal coverage,

(N calls / f('arrfdar)

CR=—7—"—"—"7-"—.
(Npop * figration) * Tarray

2

None of these five factors are known or can be estimated
with high precision, but by appropriately defining the factors
and their ranges, lower and upper bounds for population cue
rates during the fall migration can be estimated. Such infor-
mation is currently lacking for BCB bowheads or any other
population of bowhead whales.

B. Bowhead autumn migration

The majority of the BCB population of bowhead whales
typically summers in the eastern Beaufort Sea, in areas such
as Amundsen Gulf, around Banks Island, and north of the
Mackenzie River Delta, Canada (e.g., Moore and Reeves,
1993). Beginning in late August and continuing into
October and November, whales travel westward along the

3612  J. Acoust. Soc. Am. 149 (5), May 2021

North Slope of Alaska, heading for their overwintering
grounds in the Bering Sea. Unlike the eastward spring
migration, when whales follow open-water leads that are
often far from shore, the fall migration corridor in the
Beaufort Sea is generally close and parallel to shore, mostly
in water depths of 20-50 m (Wiirsig and Clark, 1993; Moore
et al., 2000; Quakenbush et al., 2012; Citta et al., 2015;
Clarke et al., 2018). Aerial surveys over many years (e.g.,
Miller et al., 1996; Clarke et al., 2018) have confirmed the
generally westward movement of the migrating whales, but
whales will opportunistically continue feeding during the
migration. As a result, some individuals may linger or wan-
der, with some whales doubling back to briefly travel east-
ward (e.g., Harwood et al., 2017).

Il. METHODS

Sections I A-IIE explain in detail how we obtain esti-
mates for the components of Eq. (2) above, including neces-
sary assumptions and approximations. Section Il A deals with
N_aus» as obtained using passive acoustic recorders over eight
field seasons. Section II B explains the methods used to bound
Jrorridor» While Sec. IIC explains the methods used to bound
[migration- Section IID addresses the variable N, while
Sec. IIE addresses the array crossing time T,qy. All of this
information is combined to calculate bounds on cue rates in
migrating bowhead whales, which are presented in Sec. ITI.

A. Whale call database (obtaining N..s)

Between 2007 and 2014, as part of their exploration
activities in the Beaufort Sea, Shell Exploration and
Production Company implemented an acoustic monitoring
program to study the effects of industrial activities on bow-
head whales (see Blackwell et al., 2013; Blackwell et al.,
2015; Blackwell et al., 2017; Thode et al., 2012; Thode
et al., 2016; Thode et al., 2020). Directional autonomous
seafloor acoustic recorders (DASARs) were deployed at five
sites (where each site consists of an array of DASARs) in
the central Beaufort Sea between Kaktovik and Harrison
Bay, Alaska, over an east-west distance spanning 280km
(Fig. 1; latitude range 70.2°-71° N, longitude range
143.1°-150.7° W). Each array was arranged as a grid of
equilateral triangles with 7km spacing between adjacent
DASARs. There was some variation between years in the
number of DASARs per array. For the calculations pre-
sented in this paper, we considered four arrays (sites 2-5)
with seven DASARs each and one array (site 1) with three
DASARs, as shown in Fig. 1. Site 4 had two different
(flipped west to east) configurations over the years, each
with seven DASARSs: the western configuration (blue + red
DASARs in Fig. 1, 2007-2011) or the eastern configuration
(red 4 yellow DASARs in Fig. 1, 2012-2014). Site 2 could
not be deployed in 2010 because of pack ice. Note, however,
that 2010 deployments took place 2-3 weeks before the
onset of the migration (see below), and all years included in
this study were considered low-ice years (see National
Snow and Ice Data Center, 2021).

Blackwell et al.
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FIG. 1. (Color online) Locations of the five DASAR sites (arrays, sites 1-5) in the Beaufort Sea, 2007-2014. The inset shows the location of the map on the
north coast of Alaska. Blackwell et al. (2015) includes DASAR deployment positions.

In the analysis that follows, each of the five arrays
served the role of a “gate” through which migrating whales
traveled during their westward migration. Specifically, we
aimed to count calls in a series of adjacent circles covering
the area of each array, as illustrated in Fig. 2. Sections
I A 1-IT A3 provide details on the time period (the migra-
tion) over which the calls were counted as well as how call
numbers were tallied.

1. Defining the migration sampling period

Bowhead whales are generally omnipresent in the shal-
low (<50m) waters of the Canadian Beaufort Sea during
the summer and fall (Harwood et al., 2017; Ferguson et al.,
2021). Because they are traveling around during this time,
presumably looking for food, there is usually not a clearly

North boundary of array

A DASARs

2.0-km circle
—— 3.5-km circle

: ob

A (a) and (b) are hypothetical

c crossings of the array by whales,
, 3 with bearings of (a) 276° T and
A (b) 250° T (see text for more
. B/ information)

South boundary of array

FIG. 2. (Color online) DASAR array of seven adjacent DASAR circles
(A-G), each of radius 3.5km (2-km circles are shown with dashed lines).
Dotted lines show the northern and southern boundaries of each array
(when all DASARSs are functional).
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identifiable start to the fall migration based on acoustic
detections in the arrays. (DASAR deployment dates varied
by year, ranging from 30 July to 26 August.) We therefore
relied on local traditional knowledge from whale hunters,
who place the start of the fall migration, i.e., the time when
whales are consistently heading westward, near the end of
August or early September (Moore and Reeves 1993;
Huntington and Quakenbush, 2009; Clarke et al., 2018).
With the goal of being conservative (i.e., miss the fewest
migrating whales possible), the start date of the migration
was arbitrarily set at 27 August for the easternmost site (site
5, see Fig. 1), 28 August for the central sites (sites 4 and 3),
and 29 August for the westernmost sites (sites 2 and 1). This
staggering of days accounts for the fact that at a mean speed
of 5km/h (see Sec. IIE), a bowhead whale could cover the
280km between sites 5 and 1 in 56 h, or 2.3 days, though
they likely take longer (Olnes et al., 2020). The end of data
collection varied between sites and years, occurring between
28 September and 12 October (Table I).

2. Localized call counts at each DASAR

Bowhead whale calls were identified with an automated
call detector (Thode et al., 2012), which used triangulation
to localize any whale call detected simultaneously on two or
more DASARs within the same array. [For more informa-
tion on localization methods, see Greene et al. (2004),
Blackwell et al. (2007), Blackwell et al. (2013), Blackwell
et al. (2015), and Blackwell ef al. (2017).] The detectability
of calls and the accuracy of localizations decrease with
increasing distance from the arrays (Greene et al., 2004;
Thode et al., 2012; Thode et al., 2020). Two previous stud-
ies (Blackwell et al., 2015; Blackwell et al., 2017) have
shown that within 2 km of a DASAR, there was insignificant
variation in call detectability with ambient noise conditions.
Here, however, calls need to be tallied in larger circles, of
radius 3.5km, to meet the requirements of the analysis, i.e.,
continuous monitoring of whale calls over the north-south
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TABLE I. Periods of data collection at each site each year. The start date
for tallying call localizations, i.e., the start of the migration, was the same
across years: 27 August at the easternmost site 5, 28 August at the central
sites 4 and 3, and 29 August at the westernmost sites 2 and 1. Site 2 could
not be deployed in 2010 due to the presence of pack ice.

Year Start/End Site 1 Site 2 Site 3 Site 4 Site 5
All years Start 29 Aug. 29 Aug. 28 Aug. 28 Aug. 27 Aug.
2007 End 120ct* 11 0ct. 8 Oct. 10 Oct. 9 Oct.
2008 End 7 Oct. 6 Oct. 5 Oct. 4 Oct. 2 Oct.
2009 End 4 Oct. 5 Oct. 1 Oct. 2 Oct. 5 Oct.
2010 End 30 Sep. — 1 Oct. 3 Oct. 4 Oct.
2011 End 5 Oct. 4 Oct. 3 Oct. 10ct. 30 Sep.
2012 End 3 Oct. 4 Oct. 6 Oct. 6 Oct. 5 Oct.
2013 End 3 Oct. 2 Oct. 10ct.  30Sep. 29 Sep.
2014 End 28 Sep. 29 Sep. 30 Sep.  10Oct. 2 Oct.

“Whale call localization ended at site 1 on 12 October 2007, but the
three DASARS actually continued recording until late November 2007 (see
Sec. I1C).

(N-S) width of the “gate” (Fig. 2). A circle of radius 3.5km
has about thrice the area of a circle of radius 2 km (~38.5 ver-
sus 12.6km?). All else being equal, one would therefore expect
about 3 times the number of calls in the larger circles. A com-
parison of the number of calls localized within 3.5-km circles
versus 2-km circles, at each site and year combination (n = 39)
and over the entire season, showed a mean ratio * standard
deviation (SD) of 2.53 = 0.2 instead of the predicted 3.06,
meaning that on average, about 17% of calls were missed due
to masking." Consequently, for each site and year combination,
the number of localized calls was tallied within 2-km circles
around each DASAR, starting on the late August dates listed
above and ending when the recorders were retrieved. These
values were multiplied by 3.06 to get estimated numbers of
whale calls in the 3.5-km circles shown in Fig. 2. This extrapo-
lation assumption is supported by the relatively uniform distri-
bution of whale calls across a DASAR array when viewed
over an entire season.'

Knowledge of the distribution of hourly call localiza-
tions at individual DASARs helps when later interpreting
results, so this variability was quantified within 2km
circles.' Overall, of 197640h of monitoring data at

individual DASARs across all years, 78% of sampled hours
were devoid of calls. The remaining 22% of sampled hours
(42 849h) included one or more calls, indicating the nearby
presence of at least one whale. Of these hours with calls pre-
sent, 70% included 1-3 calls, 92% had 10 or fewer calls,
and over 99% had fewer than 30 calls.

3. Compensating for non-functional or missing
DASARs

Adjustments had to be made for the fact that sites did
not always include a full complement of functional
DASARs. For example, in 2009, DASAR 3 G gave unreli-
able bearings that could not be used in localizations, and in
2010, DASAR 3 A could not be deployed due to ice.! Call
densities could be quite different between DASARs on a
particular day, but over an entire season, the densities
smoothed out.! Therefore, if the missing DASAR was the
northernmost or southernmost of an array, call counts
obtained at the DASAR with the nearest latitude (within the
same array) were used. If the missing DASAR was in the
middle of an array, the average call count from its northern
and southern neighbors was used. Table II shows the esti-
mated numbers of whale calls for each site in each year, as
adjusted for masking and missing DASAR data; they total
561001 calls over the years 2007-2014.

B. Correcting call counts for spatial undersampling:
Compensating for the N-S width of the migration corri-
dor (obtaining fcorridor)

The ~28 km N-S span of adjacent circles extending off-
shore at each site did not cover the full geographical width of
the bowhead migration corridor, and therefore it is likely that
not all whales swam through the arrays. To allow estimation of
mean cue rate, the call counts shown in Table II thus need to
be corrected for this incomplete spatial coverage, to account
for calls generated north and south of our defined array bound-
aries (Fig. 2). A failure to account for these calls would lead to
an undercount of the true number of whale calls being pro-
duced within the east/west boundaries of a site and a corre-
sponding underestimation of call rate. To correct this bias, the
factor f,,.igor Was introduced in Eq. (2). fiomigor requires

TABLE II. Number of localized calls at each site, each year, adjusted for calls missed due to masking and for missing data at certain sites and years (see the
text), with totals in boldface. Each value is the sum of the call localizations obtained in 3.5-km circles around each DASAR of an array, over the date ranges
specified in Table 1. Site 2 was not deployed in 2010 due to ice. Sites are listed from west (site 1) to east (site 5).

Array size Site 1 Site 2 Site 3 Site 4 Site 5

No. of DASARs 3 7 7 7 7 Total
2007 5119 11585 8329 10682 20074 55790
2008 6141 30361 18290 25470 19045 99308
2009 2335 4250 3859 3926 15802 30172
2010 2111 — 21975 28008 14197 66292
2011 2292 6099 5073 5935 1285 20684
2012 2938 8501 10906 10491 12283 45118
2013 18834 42871 32288 62213 12861 169067
2014 5025 11230 14673 24844 18799 74571
TOTAL 44795 114897 115393 171570 114 346 561001
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independent information on the whales’ spatial distribution
during the autumn migration, so line-transect aerial survey data
were used for this purpose. The Appendix includes complete
technical details about the analysis, while a summary of the
methods is presented below.

The percentage of the migration corridor covered by the
DASAR arrays was estimated using bowhead whale sighting
and survey effort data from the Aerial Surveys of Arctic
Marine Mammals (ASAMM) project (Alaska Fisheries
Science Center, 2021; Clarke et al., 2018). From these data,
90899 km of transect effort and 719 bowhead whale sightings
were concurrent with the years of our study (2007-2014). The
analysis involved a three-step process: (i) constructing spatially
explicit models of bowhead whale relative abundance based on
ASAMM bowhead whale sightings from September
2007-2014 (refer to whale sightings and the resultant relative
abundances in Fig. 3); (ii) applying the relative abundance
model to predict the expected number of bowhead whales in
every cell of a 5 x 5km grid overlying the migration corridor
(see the Appendix); and (iii) using the predicted number of
bowhead whales in each cell to compute, for each site, f...,igor
i.e., the proportion of whales expected to be within the latitudi-
nal range of the site (shown with white polygons in Fig. 3).

The predicted number of whales within each cell is
based on the assumption of uniform survey effort throughout
the study area, thereby eliminating apparent variability in
bowhead whale distribution due only to spatial heterogene-
ity in survey effort. For each site, f, 4, Was calculated as
the predicted number of whales within the north/south
boundaries of the array (uror ;. corresponding to the number

156° W 152I“ w 148[" w

of whales within the white polygons of Fig. 3; see the
Appendix), divided by the predicted number of whales pass-
ing through the full north/south span of the migration corri-
dor at the longitude of the array (u;o7,, corresponding to
the number of whales within the black dashed lines of
Fig. 3). Values of f,,, 4 are shown in Table III; for each
site, the call counts in Table II were adjusted using these
[rorridor Values to yield estimated call counts, as if the entire
migration corridor had been monitored at each site.

C. Correcting raw call counts for temporal
undersampling: Compensating for the duration
of the migration season (obtaining frigration)

Another bias in the raw call counts is that they are not
measured over the entire duration of the migration season. For
logistical reasons, the DASAR recorders were removed in late
September to early October, right before the onset of ice
freeze-up. While the bulk of the bowhead migration is thought
to occur from late August to late September, it is known to
continue in October and into early November (e.g., Blackwell
et al., 2014; Ferguson et al., 2021). For the calculations pre-
sented in this document, we need to estimate the fraction of the
population missed due to removal of the recorders prior to the
end of the migration (i.e., 1 — figrarion). We relied on three dif-
ferent passive acoustic datasets to help us estimate f,iq arion-

1. Dataset (1)

Year-round acoustic data were collected by an Aural-
M2 recorder ~87 km north-northwest of site 1 [recorder

144w 0w

[ = Beaufort Sea

ASAMM September 2007-2014

70°N— Migration percentiles: Isobaths:

Predicted relative abundance:

Bowhead whale group size:
=1

70th == AU 0.000 - 0.020 w23 =
—— 60th = 50 m 0.021 - 0.054 m4s v —69° N
— Soth - 200m 0.055 - 0.094 y
1 S —= 2000m 0.095-0.152 Ljei®
30th W 1227
Migration percentile closest to the center of each array polygon: F
S171% S272% S365% S455% S577%
69° N 0 20 40 80 120 160 km
- —— —
T . T T ! T .
156° W 152° W 148° W 144° W

FIG. 3. (Color online) Determination of the proportion of bowhead whales migrating through the area covered by each array. ASAMM bowhead whale
sighting data from the month of September in 2007-2014 (black squares) were used to construct spatially explicit models of bowhead whale relative abun-
dance, shown with shaded areas (blue online). The parallel lines show the 30th-70th percentiles of the migration’s distance to shore. The white polygons
overlay each of the five sites, S1-S5 and have a width of 15km (sites 1, 2, 3, and 5) or 20 km (for the wider site 4, see Fig. 1). The estimated number of bow-
head whales in these white polygons, as a fraction of the estimated number of bowhead whales over the entire width of the migration (as delimited by the

dashed black lines), defines .4, (see the Appendix).
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TABLE III. Call counts at each site for each year, adjusted to include the full N-S width of the migration corridor, with totals in boldface. f,.,,q0, is the frac-
tion of the bowhead migration corridor covered by the DASAR arrays during 2007-2014, as determined by aerial surveys (all years combined). For each
site and year, call counts from Table II were adjusted using the listed £, Value.

Site 1 Site 2 Site 3 Site 4 Site 5

Frommidor 0.221 0.523 0.567 0.556 0.531 Total
2007 23147 22140 14681 19228 37838 117035
2008 27768 58024 32237 45845 35900 199774
2009 10557 8123 6801 7067 29786 62333
2010 9547 — 38733 50414 26761 125455
2011 10363 11655 8942 10683 2423 44066
2012 13282 16246 19222 18884 23153 90787
2013 85158 81930 56910 111982 24243 360223
2014 22718 21462 25862 44719 35436 150197
TOTAL 202540 219580 203389 308823 215540 1149872

152W, University of Washington (UW), blue dot in Fig.
4(a)] for the years 2008-2009 and 2011-2013. Data collec-
tion was duty-cycled at 30% (9 min of recordings every half
hour). Presence/absence of bowhead calls was assessed for
each 9-min file and then expressed as a daily percent time
with bowhead calls present. The daily percentage of time
with bowhead whales present was then expressed as a cumu-
lative percentage for each of the 5 years [dashed blue lines,
Fig. 4(b)] as well as an average across all years [blue dots,
Fig. 4(b)].

2. Dataset (2)

Year-round acoustic data were collected by an Aural-
M2 recorder northeast of Utqiagvik [recorder BF2, National
Oceanic and Atmospheric Administration (NOAA), yellow
dot in Fig. 4(a)] for the years 2007-2009 and 2011-2014.

Different duty cycles were used over the years, with
between 27% and 45% coverage. Presence/absence of bow-
head calls was assessed for every 10min of recorded data
and expressed as a daily percent time with bowhead calls
present. Data were plotted as cumulative percentages for
each of the 7 years [yellow lines, Fig. 4(b)] as well as an
average across all years [yellow triangles, Fig. 4(b)].

3. Dataset (3)

On 12 October 2007, inclement weather forced us to
abandon the three site 1 DASARs [1D, 1E, and IF, red dot
in Fig. 4(a); see the Appendix] and retrieve them in August
2008. (Note that in 2007, these DASARs were part of a
larger array, which was retrieved on 12 October.) These
DASARS recorded continuously until late November 2007.
Whale calls were manually analyzed on these three

(<)
oy o 152W

Utgiagvik

71°N | (Barrow)

3 DASARs

40 °
at S1 s2

20' S3

70°N

153°wW 150°W

T
141°\)

J FIG. 4. (Color online) Assessing the
timing of the bowhead migration. (a)
Map showing the locations of record-
ers BF2 and 152W, in addition to the
three DASARSs at site 1, all in relation
s4 S5 to the other DASAR sites, indicated
with S2-S5. Recorder BF2, northeast of
Utgiagvik (Barrow) is ~195km from
site 1 and ~470km from site 5, while
recorder 152W is ~87km north-

Cumulative percentage

northwest of site 1. (b) Daily cumulative
percentage of intervals with bowhead
whale detections for recorder BF2 (tri-
angles, light-colored lines), 152W (dots,
dashed lines), and the three DASARs at
site 1 in 2007 (dark thick line). Lines
represent data from individual years,
while the symbols represent multi-year
averages for each site. The shading indi-
cates the range of retrieval dates for site
1 over the 8 years of the study.

0
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DASARs for the entire migration. To allow comparison
with the other acoustic datasets presented above, presence/
absence of bowhead calls was assessed for the first 9 min of
every half hour throughout the season, i.e., emulating a 30%
duty cycle. Data were plotted as a cumulative percentage,
shown with the solid red line in Fig. 4(b).

Site 1 in 2007 is the only site for which we have infor-
mation on the progression of the migration. The blue shad-
ing in Fig. 4(b) shows the range of retrieval dates at site 1
during 2007-2014. When compared to the 2007 (red) cumu-
lative percentage line, this range of retrieval dates corre-
sponds to a fraction of missed migration (1 — fierarion) Of
between 70% (for a 28 September retrieval) and 30% (for a
12 October retrieval). Figure 4(b) shows that the timing of
the migration at locations 152W and BF2 varies consider-
ably from one year to the next, as is also known from other
studies in the area covered by S1-S5 (e.g., Blackwell et al.,
2007). Our goal in this paper is to estimate a range of likely
cue rates produced by the whales, using the best available
information for the unknowns in Eq. (2). Therefore, consid-
ering the factors above and our wish not to bound our cue
rate estimates too narrowly, we settled on the assumption
that the DASAR deployments missed between 25%
(fimigration=0.75) and 75% (f\igrasion = 0.25) of the migrating
bowhead whales. These values are used in the calculation of
cue rates in Sec. II1.

D. Estimating BCB bowhead population size
(estimating N,,p)

Givens et al. (2013) estimated the abundance of the
BCB population of bowhead whales in 2011 to be 16892
individuals, from a combination of visual sightings and
acoustic  locations [95% confidence interval (CI):
15704-18928]. They also calculated the rate of increase in
the population by combining the 2011 population estimate
with a time-series of visual abundance estimates, which
started in 1978. As a result, they obtained an annual rate of
increase in 3.7% (95% CI: 2.8%—4.7%). The 2011 abun-
dance estimate and 3.7% yearly rate of increase were there-
fore used to estimate a population size for each year from
2007 to 2014 (Table IV).

E. Whale travel speed and direction (estimating T,,,)

Migrating whales require a certain time to traverse the
east-west boundaries of each site, and this amount of time
needs to be quantified for the calculation of cue rate. The
time to traverse [T,,4y in Eq. (2)] depends on the speed of
travel and the pathway (angle) across the array. Speed of
travel in migrating bowhead whales in the Beaufort and
Chukchi seas has been measured in several studies and has
been shown to average about 5km/h (Mate et al., 2000;
Rugh and Cubbage, 1980), with minimum and maximum
values of 3.1km/h (Braham et al., 1980) and 7km/h (Zeh
et al., 1993; Citta et al., 2015). The latter is considered a
maximum observed migration speed of bowheads not flee-
ing vessels or assisted by currents.

J. Acoust. Soc. Am. 149 (5), May 2021

TABLE IV. Estimated size of the BCB populations of bowhead whales
(Npp) for the years 20072014, based on Givens er al. (2013). Values for
all years but 2011 were estimated assuming an annual rate of increase of
3.7%. The three rightmost columns represent the population sampled when
Jmigration=15%, 50%, or 25%, where (1 — fuigrarion) 18 the fraction of the
migration missed in October and early November, after the DASAR record-
ers have been retrieved. The columns thus display possible values for the
term Npop, finigration N EQ. (2).

Population sampled for f,,,;¢ arion Values of

Estimated
Year abundance (N,,,) T5% 50% 25%
2007 14607 10955 7303 3652
2008 15147 11361 7574 3787
2009 15708 11781 7854 3927
2010 16289 12217 8144 4072
2011 16892 12669 8446 4223
2012 17517 13137 8758 4379
2013 18165 13624 9082 4541
2014 18837 14128 9418 4709

To estimate the angular distribution of migration paths
across the array, we used ASAMM aerial survey data col-
lected between longitudes 142° W and 152° W (which cov-
ers all our sites) and compiled the orientations of 120 groups
(of 1-5 individuals) of whales that were seen during the
month of September in 2007-2014. Groups were oriented in
all cardinal directions, but the mode of the distribution was
toward the west, 300°, with a circular mean orientation of
307° T, ie., somewhat south of northwest. However,
roughly 1/3 of the observed orientations had an easterly
component, resulting in a wide circular SD of 85°. To model
a distribution of migration headings, only orientations
toward the west were retained and then used to construct a
cumulative empirical distribution. The implications of
removing eastern orientations from the heading estimates
are examined in Sec. IV.

To estimate bounds on Ty, putative crossing paths of
whales across the array were then simulated (see two exam-
ples in Fig. 2). First, the aforementioned heading distribu-
tion was randomly sampled 10 000 times to simulate a set of
migration headings that whales would take across an array.
For each heading generated, a grid of parallel, putative
whale paths was constructed, evenly distributed in space
across the entire area of both types of arrays (7- and 3-
DASAR), with the paths separated by 100 m and all orien-
tated along the selected heading. For each simulated path,
the distance required to cross the array was calculated.
(Gaps between circles were skipped, since calls localized
there were not counted.) The process was then repeated for
another sampled heading. The simulations tested 3323 681
possible crossing paths for the large (7-DASAR) arrays
(sites 2-5) and 2 028 344 possible crossing paths for the site
1 array. Because of the wide spread of headings observed
and the irregular shape of the arrays, possible crossing dis-
tances varied widely, from a minimum near O if a crossing
happened to barely intersect the circle surrounding a single
DASAR to 27.5km for sites 2-5 and 14 km for site 1. The
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TABLE V. Estimated values of T,,,,, from Eq. (2), using three different swimming speeds (3.1, 4.7, and 7 km/h) combined with a “short” and “long” cross-
ing path through each type of array, as defined in the supplementary material (see Footnote 1). See text for more information.

Crossing distances

7 DASARSs (sites 2, 3, 4, and 5)

3 DASARSs (site 1)

Short, 4.4 km

Long, 27.5km Short, 2.8 km Long, 13.9km

Travel speed
3.1km/h 14
4.7km/h 0.93
7km/h 0.63
Mean 3.6
SD 33
Crossing time
Long duration (mean + SD) 6.9
Short duration (mean — SD) 0.33

Time to cross (h)

8.9 0.90 4.5
5.8 0.60 3.0
39 0.40 2.0
1.9
1.6

3.5
0.30

5th and 95th percentiles of each distribution' were used as
representative “short” and “long” crossing distances.

Table V combines the three travel speed estimates and
the two “short” and “long” crossing distances to yield six
crossing times for each type of array, which were then aver-
aged. This method was used instead of simply using the
mean or median crossing distance from the simulations in
order to establish the broadest feasible spread of crossing
durations, which in turn is used to place bounds on the maxi-
mum and minimum possible cue rates. The mean crossing
time £ SD for sites 2-5 is 3.6 = 3.3 h, and that for site 1 is
1.9 = 1.6h. In addition to these means, the values (mean
+ SD) and (mean — SD) were used in the cue-rate calcula-
tions as the “long duration” and “short duration” crossing
times for each type of array (Table V).

Ill. RESULTS

Cue rates were calculated by combining Eq. (2) with
the corrected call counts (N ys/feorridor) from Table III, the
three estimated sizes of the population available to the
DASAR arrays (N, * fiigrarion) from Table TV, and three
crossing times (Ty,,,y) from Table V (bottom section: mean
duration, long duration crossing, and short duration cross-
ing). Altogether, these combinations yield 351 different esti-
mates (5 sites x 8years x 3 population estimates x 3
crossing durations, minus missing data for site 2 in 2010),
with a median cue rate of 1.3 calls/whale/h and an interquar-
tile range (IQR) of 0.5-5.4 calls/whale/h. Eighty percent of
these estimates lie between 0.3 and 14.5 calls/whale/h.

Data are summarized graphically in Figs. 5 and 6. In
Fig. 5, only the two extreme crossing times (“long duration”
and “short duration” at the bottom of Table V) were used in
the calculation of cue rates. The values in Fig. 5 therefore
collectively represent upper and lower boundaries of our
estimates, shown as a function of site [Fig. 5(a)] and array
crossing time [Figs. 5(b) and 5(c)], for all years combined.
We did this to bracket our cue rate estimates as much as pos-
sible, despite the uncertainty in several parameters that enter
into these estimates.

3618  J. Acoust. Soc. Am. 149 (5), May 2021

Figure 6 shows cue rates calculated using the mean
array crossing time (Table V: 3.6h for sites 2-5, 1.9h for
site 1), while illustrating the effect of f,,¢rarion ON the cue
rate estimates: for each year and site, cue rates are shown
for fuigration values of 75% (A), 50% (B), and 25% (C). The
thick purple line is placed at the median value for all cue
rates shown in the figure (n=117), 0.96 calls/whale/h, and
the shaded area shows the IQR, 0.5-1.7 calls/whale/h.

IV. DISCUSSION

The main finding of this analysis, illustrated in Figs. 5
and 6, is that bowhead calling rates during the migration are
only, on average, a few calls per whale per hour in the late
summer and fall. Table II shows large variations in the num-
bers of localized whale calls among sites in the same year
and from one year to the next, with differences of up to an
order of magnitude. There are also substantial uncertainties
in the temporal coverage, and, to a lesser extent, the spatial
coverage, of the bowhead migration by the DASAR arrays.
In addition, between 2007 and 2014, the bowhead popula-
tion is thought to have increased by 25%-30% (Table IV).
Nevertheless, despite these sources of variation and ambigu-
ity, mean or median cue rates (e.g., dots and squares in
Fig. 5) are surprisingly consistent for most of the site/year
combinations. The overall median cue rate, which includes
all 351 estimates, came to 1.3 calls/whale/h, with half the
estimates between 0.5 and 5.4 calls/whale/h. In the more
conservative summary in Fig. 6, calculated assuming a
mean crossing time through the arrays, the median cue rate
was somewhat lower, 0.96 calls/whale/h, with 99% of the
estimates below 6.6 calls/whale/h.

One might wonder whether this relatively low median
cue rate per animal arises from long periods of time during
the migration when no whales are present, which are then
occasionally punctuated by the passage of whales with an
intrinsically higher cue rate. Short intervals with high cue-
rate animals, divided over the entire season, could produce
an artificially low mean cue rate across the entire season. In
actuality, the low cue rates presented in this study are
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consistent with both aerial survey observations and the dis-
tribution of hourly localized call counts at individual
DASARs." Of all hours with at least one call localized
within 2km of a DASAR, 81% had fewer than five calls.
Meanwhile, migrating whales most commonly travel singly
or in small groups of a few individuals (e.g., Ashjian et al.,
2010; Okkonen et al., 2018). At an average travel speed of
4.7 km/h, it would take up to 0.85h to cross a circle of radius
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FIG. 6. (Color online) Estimated cue rates as a function of site and year,
using the estimated mean crossing time through the arrays (see Table V).
For each year and site combination, three cue rates were estimated (x axis
labels): (A) assuming 25% of the bowhead migration was missed at the end
of the season (fuigraiion=0.75), (B) assuming 50% was missed
(Fmigration="0.5), and (C) assuming 75% was missed (f,uigrarion = 0.25). See
Table IV for details. The dark line shows the median cue rate for the com-
bined 117 estimates included in the figure, and the shading shows the IQR
(25th-75th percentiles).
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the five sites and all years combined,
summarized by site and by the time
taken to cross the arrays. (a) Overall
summary as a function of site. Number
of estimates included: 48 each for sites
1 and 3-5 and 42 for site 2. (b) and (c)
Same data, shown as a function of
crossing time. A long crossing time (b)
is 6.9h for sites 2-5 and 3.5h for site
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2km, and if calling at a rate of 1.3 calls/whale/h, four tran-
siting whales could thereby produce ~4.4 calls during their
crossing (i.e., fewer than 5 calls/h). This simple reality
check links aerial survey-based behavioral observations of
group sizes with raw call counts at individual DASARs to
demonstrate that the cue rates of individual animals must be
on the order of only a few per hour.

Bowhead cue rates obtained here are similar to other
published values for mysticetes. For example, Marques
et al. (2011) obtained 1.7 calls/whale/h for North Pacific
right whales (Eubalaena japonica), but, understandably, this
value was based on a very small sample size. Martin et al.
(2013) obtained a cue rate for minke whale (Balaenoptera
acutorostrata) “boing” calls of 6 calls/whale/h, based on a
single individual tracked over ~12h. Finally, in a study
combining visual sightings, acoustic recordings, and infra-
red camera video, Guazzo et al. (2019) obtained average
cue rates for migrating Eastern North Pacific gray whales
(Eschrichtius robustus) of 7.5 calls/whale/day, which corre-
sponds to 0.31 calls/whale/h.

It is important to remember that this first attempt at esti-
mating bowhead whale cue rates during the fall migration is,
by necessity, coarse. We have pooled all age and sex classes
and all call types produced by the whales. We have also
assumed that all whales were in the same behavioral state
(migrating). Recent satellite telemetry studies covering
20062018 (spanning the years of this study) have shown
that 64%—78% of location estimates in the areas of our five
sites were classified as “transiting” (Olnes et al., 2020).
Therefore, our recordings could also have included sounds
from whales that were lingering and/or feeding, presumably
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with different calling rates for these activities (e.g., May-
Collado and Quinones-Lebréon, 2014). We have also not
taken cohort segregation into account, whereby different sex
and age classes migrate at different times (Koski and Miller,
2009; Huntington and Quakenbush, 2009) and may vocalize
at different rates (e.g., mother-calf pairs versus adult
females without a calf). Note, however, that because this
cohort segregation is not clear-cut and varies between years,
our sample will likely have included whales of all sizes and
both sexes, including cow-calf pairs. We have also assumed
that individual cue rates do not change over the course of
the autumn migration (e.g., Guazzo et al., 2019) and do not
vary with whale density (e.g., Noad et al., 2017). Finally, in
addition to the effects of man-made sounds on calling rates,
discussed in Sec. IV B, wind-driven ambient noise levels—a
natural factor—also influence call production rates (Thode
et al., 2020), but no adjustment was made for this.
Fortunately, the statistical distribution of ambient noise lev-
els was consistent across all years.

A. Assessing our uncertainties

Understanding how our uncertainties affect the calcu-
lated cue rates helps increase our confidence in the values.
For example, whale call counts are the primary factor that
the cue rates are based upon, so what would happen if we
had missed half of the calls produced within 2km of all the
DASARs—an extremely unlikely scenario? The median cue
rate given above would simply double to 2.6 calls/whale/h,
still a very low value.

When estimating bounds on T4y, aerial survey data
were used to estimate the migration headings of the animals.
To be consistent with the assumption of Eq. (2), all easterly
orientations (0°~180°) were removed when simulating paths
across a DASAR array. What would be the impact on the
results if instead some whales were allowed to temporarily
migrate eastward across the arrays, as shown by the aerial
survey data? We note first that if all group orientations are
included in the simulations described in Sec. ITE, the distri-
bution of single-crossing Teyrqy times' hardly changes.
However, the 120 whale bearings from the aerial surveys
show 22% of migrating groups heading toward the eastern
quadrant (45°-135°). Under an extreme-case scenario,
nearly a quarter of the population (25%), after initially
crossing an array from east to west, could double back and
travel back across the array west to east, before eventually
doubling back once more and crossing the array for a third
time. One can continue this logic and deduce that 25% of
those whales that doubled back once (or 6.25% of the total
population) will double back yet again and end up crossing
an array five times in total, etc. If the mean time to cross the
array once is T4y, then the effective mean crossing time
for the entire population T, becomes

2 3
3 1 1 1
Tz-/f = Tarruy |:Z+ 3 (Z) + 5% <Z> + 7% <Z> . :|
~ Tarray(0.7541.22) ~ 2T 4y, 3)
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and the mean traversal time across an array for the popula-
tion effectively doubles (27,,,qy). Equation (2) then shows
that under this extreme scenario, the initial cue rates pre-
sented in the figures would need to be halved. In this case,
the cue rates provided in Sec. III can be considered as an
upper bound, which again emphasizes the low values of cue
rates in migrating bowhead whales. Further analyses of
bowhead whale migration directions would help determine
whether the scenario discussed here is realistic.

It is important to remember that the most extreme val-
ues in the spread of cue rates shown in Figs. 5 and 6 result
from a combination of our most extreme assumptions. For
example, the maxima in Figs. 5(a) and 5(c) (empty triangles)
were all obtained assuming 75% of the migration was
missed and array crossing time was extremely short (0.33
and 0.3 h, Table V) in peak calling years, 2013 for sites 1-4
and 2007 for site 5. Similarly, the minima in Figs. 5(a) and
5(b) (red triangles) were all obtained assuming 25% of the
migration was missed and array crossing time was
extremely long (6.9 and 3.5h, Table V) in years with low
calls counts (2009-2011). Table V shows that for the 7-
DASAR and 3-DASAR arrays, respectively, the “long
duration” array crossing times were nearly 21 and 12 times
greater than the “short duration” times. This variability is
reflected directly in the calculated cue rates in Fig. 5, yet
77% and 90% of the 234 estimates included in the overall
summary [Fig. 5(a)] are below 10 and 20 calls/whale/h,
respectively.

B. Can differences between sites be explained
by variable levels of man-made sounds?

During 2007-2014, our study area included a wide
range of anthropogenic activities concurrent with data
collection by the DASARs. Considering there are known
dose-dependent effects of certain man-made sounds—such
as airgun pulses and machinery tones—on bowhead whale
calling rates (Blackwell et al., 2015; Blackwell et al., 2017,
Thode et al., 2020), it is worth investigating whether these
external factors may have led to predictable differences in
cue rates at different sites within the same year:

+ In 2007, two seismic surveys (using 3147 and 20 in.’
arrays) took place between sites 3 and 4, between mid-
September and early October. Blackwell et al. (2013) and
Blackwell ef al. (2015) showed that proximity to seismic
operations represses calling in bowhead whales, while at
greater distances, they call more than in the absence of
airgun sounds. Considering the relative distances of the
sites to the seismic operations, we would expect sites 3
and 4 to have lower calling rates than the other sites,
which is what is shown in Fig. 6.

In 2008, three seismic surveys (using a variety of arrays
or single guns: 3147, 880, 440, and 20 in.3) took place
near site 1 and between sites 3 and 4 (Blackwell et al.,
2015). The two sites where heightened calling rates would
be expected based on received levels of sound from the
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airguns are sites 2 and 5, but only site 2 shows such a
trend in Fig. 6.

In 2009, there were no seismic surveys near or within our
study area. There was, however, a seismic survey in
Canadian waters, about 300 km east of site 5, with numer-
ous airgun pulses detected at site 5 (and many fewer at
other sites). The higher cue rates at site 5 in 2009 matches
our prediction.

The 2010 deployment season was the only one with plen-
tiful nearshore ice in the DASAR deployment area, partic-
ularly west of Prudhoe Bay. As a result, site 2 was not
deployed, and site 1 had ice coverage longer than any
other site, which could explain the low site 1 cue rates.

In 2011, cue rates at all sites were low with little variation
between sites. Seismic exploration was present to the
north, but very distant. If any effects on calling rates were
present, they should have had similar consequences on all
sites.

In 2012, Shell Exploration and Production Company per-
formed exploratory drilling at Sivullig, located between
sites 3 and 4. Using data collected during these activities,
Blackwell et al. (2017) showed a clear effect of industrial
tones from vessels and other machinery on bowhead
whale calling rates. Nevertheless, these hour-to-hour or
day-to-day shifts would not be visible in Fig. 6, particu-
larly considering that the largest source of tones was ves-
sels, which during the season repeatedly transited through
or near sites 1-4, while other unidentified industrial oper-
ations took place near site 5.

The year 2013 yielded exceptionally high call counts,
with more than 8 times the number of call localizations
obtained in 2011 and 1.7 times the number of calls
obtained in 2008, the second-highest year (Table II; aver-
age numbers per site were compared, since only four sites
were deployed in 2010). Results from another study (Kim
et al., 2014) conducted over the same time period between
sites 2 and 3 also showed high call counts in 2013.
Additionally, the annual ASAMM aerial survey in the
Beaufort Sea sighted high numbers of bowhead whales in
2013 (Clarke et al., 2014). Cue rates for scenario C in
2013 in Fig. 6 (75% of the migration missed at the end of
the season) were particularly high for sites 1, 2, and 4.
Nevertheless, with such large numbers of calls, it seems
unlikely that as much as 75% of the migration was missed
that year. It is also possible that the whales were in a dif-
ferent behavioral state, for example, feeding instead of
migrating. If that were the case, we would expect whales
to be meandering around looking for food, increasing the
likelihood of them crossing an array multiple times,
which in turn would have the same effect of overestimat-
ing cue rates. If we therefore ignore scenario C, the
remaining estimates for 2013 (scenarios A and B) are
much closer to values obtained in previous years.

In 2014, there were no particular industrial or other
activities known to have occurred in the vicinity of our
study area; obtained cue rates were consistent across
sites.
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The above assessment suggests specific trends in calling
rates as a result of industrial operations, but the comparison
remains qualitative.

C. Seasonal specificity of calculated cue rates

The cue rates estimated in this paper are only valid for
migrating bowheads in September and early October, when
the whales travel westward along the Alaskan Beaufort Sea
shelf. Late summer and early fall, during the autumn migra-
tion, may be the time of the year when bowhead whales call
the least. In the thousands of days of data analyzed since
Greeneridge Sciences started using DASAR-based monitor-
ing in the Beaufort Sea in 2001 (e.g., Blackwell ef al.,
2007), detection of a bowhead call “here and there” has
been the norm, while consecutive minutes with many calls
have been rare. In 2011-2012 (Blackwell et al., 2014) and
2012-2013 (unpublished), overwintering recorders were
deployed in the locations of the DASAR arrays. The data
obtained illustrate the changes that occur in bowhead calling
at the end of the open-water season. For example, in early
November, chorusing was detected, when several whales
sang concurrently and nearly continuously for minutes at a
time, a situation never encountered in summer recordings.
Delarue et al. (2009) have reported bowhead song continu-
ously in the Chukchi Sea in November and December, while
whales were migrating southward to the Bering Sea, and
then in April and May, during their return toward the
Chukchi Sea. In Fram Strait, in the North Atlantic, Stafford
et al. (2018) recorded complex song or call sequences nearly
every hour during November to April in 2008-2014—an
acoustic detection density very different from that in the
summer. Finally, in the spring, as the whales pass Utqiagvik
(Barrow), authors have reported both song and simpler fre-
quency modulation (FM)-sweep calls, as whales transition
back to their summer repertoire (Wiirsig and Clark, 1993;
Johnson et al., 2015).

V. SUMMARY AND CONCLUSION

In this paper, a first step was taken toward estimating
cue rates in bowhead whales off the North Slope of Alaska
during the autumn migration. This is important because cue
rates are the vital link between PAM and density estimation.
Four independent datasets were combined: DASAR locali-
zation data, other PAM presence/absence data, ASAMM
aerial survey data, and population estimates from Utqiagvik
spring whale counts. We present cue rates obtained for eight
consecutive years but believe the focus should be on the
overall summary values, i.e., the median and IQR, 1.3 calls/
whale/h and 0.5-5.4 calls/whale/h, respectively. For several
of the variables considered, such as the PAM call presence/
absence data and the aerial survey data, data from multiple
years had to be pooled, despite knowing that both the timing
and pathway of the fall migration can vary between years.
The amount of exposure to airgun pulses was also quite vari-
able in our study area during 2007-2014. Differences in cue
rates at a site over two or more consecutive years could
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therefore simply be due to these external factors. Despite
these complexities relating to bowhead behavior, and
despite substantial uncertainties in some of our assumptions,
it is encouraging that reasonable bounds on cue rates can be
obtained through this approach and that these bounds are
consistent across five sites and eight years. In the future, cue
rates presented here may be used to monitor trends in abun-
dance of the increasing BCB bowhead population.

While median cue rates are a good first step, knowledge
of how a species’ cue rates vary by season, with sex and age
classes, and with behavioral state is fundamental to the
application of reliable PAM density estimation. Further
work on several variables, including the spread of migration
headings and the fraction of the migration season missed,
would reduce the spread of these bounds further. A more
sophisticated analysis than the one presented here could also
be envisioned using a Monte Carlo simulation approach that
propagates uncertainties in all the relevant intermediary fac-
tors to the final estimates, producing a probability distribu-
tion of cue rates in migrating bowhead whales.
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APPENDIX: METHOD USED TO ESTIMATE Foorridor
THE PROPORTION OF THE CORRIDOR COVERED BY
THE DASAR ARRAYS

Bowhead whale sighting and survey effort data from
the ASAMM project (e.g., Clarke et al., 2018) concurrent
with the years of our study (2007-2014) were used to esti-
mate the percentage of the migration corridor covered by
the DASARs. This analysis involved a three-step process:
(1) constructing spatially explicit models of bowhead
whale relative abundance based on ASAMM bowhead
whale sightings from September in each year from 2007 to
2014; (2) applying the relative abundance model to predict
the expected number of bowhead whales in every cell of a
grid overlying the migration corridor; and (3) using the
predicted number of bowhead whales in each cell to com-
pute feorrigor for each site, the proportion of whales
expected to be within the northern and southern boundaries
of the site.

This analysis was based on bowhead whale sightings
made during transect effort by primary observers (Fig. 3).
The analysis did not account for availability or perception
bias because we were interested in only the proportion of
the whales traveling through the region that were within
acoustic detection range of each array. The analysis was
conducted in R version 3.6.2 (R Core Team, 2019) using
packages sp (Pebesma and Bivand, 2005; Bivand et al.,
2013), maptools (Bivand and Lewin-Koh, 2019), raster
(Hijmans, 2020), rgeos (Bivand and Rundel, 2019), rgdal
(Bivand, et al., 2019), and mgcv (Wood, 2017).

To begin, the migration corridor was partitioned into a
5-km x 5-km grid of cells.' This grid resolution was chosen
as a compromise between having adequate survey effort and
sightings in each cell to construct models and maximizing
the spatial resolution of the data.

All geospatial data were projected into an equidistant
conic projection [false easting: 0.0; false northing: 0.0;
central meridian: —148.0°; latitude of origin: 70.75°; stan-
dard parallels: 69.9°, 71.6°; linear unit: meter (1.0)]. Data
extracted for each cell included the total number of whales
sighted and the projected x and y coordinates of the mid-
point of each cell. Bowhead whale relative abundance was
modeled as a generalized additive model, parameterized
by a Tweedie distribution (Tweedie, 1984; Dunn and
Smith, 2005) with a natural logarithmic link function.
Negative binomial models were also considered, but
examination of model residuals (Ver Hoef and Boveng,
2007) suggested that the Tweedie distribution provided a
better fit to the data. The model formula may be repre-
sented as

In(E(W:)) = In () = o+ s(X;, Yi) + offset(In (L;)),
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where W; is a random variable for the number of individual
bowhead whales in cell i, with W; referring to the associated
observations and E(W;) the expected value (mean) of W;; p;
is the number of individual bowhead whales expected to be
observed in cell i; o is the intercept; X; is the projected (equi-
distant conic) longitude of the midpoint of cell i; Y; is the
projected (equidistant conic) latitude of the midpoint of cell
i; s () is the smooth function (Wood, 2017) of location cova-
riates used to describe bowhead whale relative abundance
(this function is parameterized in the model-fitting process);
and L; is the length (km) of transect effort in cell i, which
was incorporated into the model as a constant (an offset) to
account for spatially heterogeneous survey effort throughout
the study area.

The proportion of migrating bowhead whales expected
to be within the latitudinal range of each array (between the
dashed boundary lines in Fig. 2) during September of each
year (2007-2014), feorriaor» Was estimated using the spatial
model to predict the number of whales in two polygons: (1)
a strip 15km (sites 1, 2, 3, and 5) or 20 km wide (site 4, due
to the two configurations; see Fig. 1), centered on the axis of
each site, bounded on the north and south by the array
boundaries (these areas are shown in Fig. 3 as white poly-
gons), and (2) a strip of the same width as above, centered
on the axis of each site, bounded on the north and south by
the expected northern and southern limits of the bowhead
migration corridor in September. These larger areas are
delimited with black dashed lines in Fig. 3, while the migra-
tion corridor is depicted in shades of blue. The number of
migrating bowheads within each polygon was calculated as
(see supplementary material )

a!
Hrorj = ot
A

where j is the polygon index, j=1 for the strip bounded by
the array and j=2 for the strip bounded by the expected
bowhead whale migration corridor; 7 is the total number of
cells intersected by polygon j; a; is the area of cell i con-
tained in polygon j; A; is the total area of cell i, which is
25 km? for all cells; and Kror; 1s the expected total number
of whales in polygon j.

The predicted number of whales within each cell (u;)
was based on the assumption of uniform survey effort (con-
stant L; for all i) throughout the study area. The magnitude
of L; used to predict y,; does not affect the resulting value of
Jeorridor @s long as L; is constant across all cells, thereby
eliminating apparent variability in bowhead whale distribu-
tion due only to spatial heterogeneity in survey effort. For
each site, f,.,,iq0r Was calculated as piror //piror2 (Table II).

See supplementary material at https://www.scitation.org/doi/suppl/

10.1121/10.0005043 for ratios of the number of calls localized within
3.5km versus 2km of a DASAR, an example distribution of whale calls
at a site and year combination, percentage distribution of the (raw) num-
ber of localized calls detected within 2km of DASARs, a table of sites
and years with missing data, plots of the distribution of crossing paths
across 7-DASAR and 3-DASAR arrays, and additional information per-
taining to the calculation of £, idor-
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Appendix: Double-Difference Tracking

Double-difference tracking of bowhead whales using autonomous vector sensors in
the Beaufort Sea

by

Ludovic Tenorio-Hallé, Aaron M. Thode, Alexander S. Conrad, Susanna B. Blackwell, Katherine H. Kim

Submitted: Acoustical Society of America (ASA) 176™ Meeting, May 2018
Presented: Acoustical Society of America (ASA) 176™ Meeting, November 2018

135




GRECNERDGE
SCIeNCES

Evaluation of DECAF Methods Using DASARS

- DOUBLE-DIFFERENCE TRACKING OF
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* ECTOR SENSORS IN

Ludovic Tenorio-Hallél -
Aaron M. Thode?

Alexander S. Conrad?

Susanna B. Blackwell?
Katherine H. Kim?

SCRIPPSINSTITUTION OF 1 W 2

OCEANOGRAPHY GREeeNEeRIDGE SCIeNCES

136



GREENERDGE
SCIENCES Evaluation of DECAF Methods Using DASARS

OUTLINE

BACKGROUND:
* Data set
* Vector sensors & current localization approach
* Double-difference methods

THEORY:
e Time double-difference
* Bearing double-difference

RESULTS:
* Simulations
* Calibration signals (real data)
*  Whale track preliminary results (real data)
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Passive acoustic monitoring during fall migration
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Current localization method using vector sensors
DASAR

A (Directional Autonomous Seafloor Acoustic Recorder)

(]

7 km

T

A

"
)

A Location and uncertainty estimated based on intersecting bearings using
maximum likelihood approach (Greene et al., 2004).

BACKGROUND
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BACKGROUND
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Current localizations produce low resolution tracks
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Current localizations not precise enough to track
individual whales (would help study calling behavior).

Bearings may contain bias due to instrument
calibration and orientation of instruments changing
over time.

Data corrected for clock drift but time offset not
precisely adjusted: TDOA localization not possible.
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Double-difference methods

* Used in seismology to improve relative location of earthquakes in the presence
of systemic errors (i.e. timing error due to clock offsets and/or unmodeled
velocity structure from two nearby earthquakes).

(Waldhauser & Ellsworth, 2000)

For pair of seismic events:

Change in travel time <:> Change in position

* OBIJECTIVE: implement double-difference approach to vector sensors in order to
improve resolution of bowhead whale call localization.

BACKGROUND
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Double-difference removes time offset
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Double-difference equation: Time

(Waldhauser & Ellsworth, 2000)

Model Measurements Model
aTl i aT] l eas . l . .mod
Re'sidual

Adjustments : Am! = (Axi; Ayi: ATi)

Initial modeled positions: bearing triangulation

THEORY
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Double-difference removes bearing bias
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(Chen et al., 2016)
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Double-difference equation: Bearing

69‘ ; 69] . . _mod
%Am —%Amf = (6} —9’) — (6t -67)

= (Ax', AyY)

THEORY

145



GREENERDGE
SCIENCES Evaluation of DECAF Methods Using DASARS

Double-difference equations

Gm=d — m=G61d

r ~ 1

Time derivative matrix

(G time)

Time
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(d time)
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Bearing derivative
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THEORY
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Simulation: advantage of using bearing double-difference
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Simulation: Double-difference removes T & 0 biases
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Simulation: effect of sporadic error on double-difference

Sporadic error: Sporadic error:
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Calibration signals

Calibration signal (S111DT20111004210800)
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Calibration signals
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Calibration signals
- Initial positions - Time double-difference
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Bowhead whale sample calls

Two calls measured on same sensor:

Bowhead whale call (S510DT20100830231540) Bowhead whale call (S510DT20100830231609)
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b ]
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Note: hard to pick arrival time precisely.

RESULTS
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RESULTS

Bowhead whale track (preliminary results)
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CONCLUSIONS

* Double-difference approach can be formulated to use both time &
bearing information from vector sensors.

* Simulations show promising results for reducing systemic errors (time
offset + bearing bias).

* Double-difference shown to improve localization precision of calibration
signals.

* Preliminary bowhead whale results show difficulty with time double-
difference.

Future work
* Understand bearing double-difference results on calibration signals.
* Estimate double-difference error to determine localization precision.

* Reformulate double-difference to use TDOA instead of arrival times for
bowhead whale calls (to improve time measurements).
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Bowhead whale migration (Pacific population)

(Quakenbush et al., 2013)
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Double-difference derivatives
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Calibration signals
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